Physics Pretest:

\wedge Torque

1. Newton's $2^{\text {nd }}$ Law
2. Kinematics (Free fall, graphs, and combined with $F_{R}=m a$)

Practice Questions/Problems

1. What is Newton's $2^{\text {nd }}$ Law? Name and explain it.
2. Prove that acceleration for an ideal inclined plane is $a=g \sin A$.
3. Prove that acceleration for a real inclined plane is $a=g(\sin A-k \cos A)$.
4. What is meant by "A car travels at $50 \mathrm{~km} / \mathrm{h}$ "?
5. What is meant by "An apple falls at accelerates at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ "?
6. In automobile racing, there is a constant effort to increase the performance of the cars, particularly the acceleration. An engineer proposes the four following suggestions. Which one of these would, in fact, REDUCE acceleration? [B]
A) Increase the propulsion force of the motor.
B) Increase the weight of the car.
C) Decrease the mass of the car.
D) Reduce the friction forces.
7. A 20.0 kg uniform plank has four uniform concrete blocks placed on it, as illustrated. If each block has a mass of 10.0 kg and a width of 24.0 cm , where is the fulcrum located from the right end?

8. At La Ronde, the free-fall ride called the "Orbit" causes a 60.0 kg person to accelerate at a rate of $9.81 \mathrm{~m} / \mathrm{s}^{2}$ down.
a) Had the person been sitting on a balance, what would the scale reading be in newtons? [0]
b) What sensation does this situation account for? [A sense of weightlessness.]
9. A 1.0 kg mass is suspended from each side of a pulley. An extra 0.50 kg mass is added to the left side.

What is the acceleration of the set of masses on this pulley? [$2.0 \mathrm{~m} / \mathrm{s}^{2}$]

10. A 60.0 kg box is placed on a weighing scale in an elevator that is moving upwards. The scale shows a force of 700.0 N is acting on it. What is the acceleration of the elevator? $\left[1.87 \mathrm{~m} / \mathrm{s}^{2}\right]$
11. A 1000 kg car driving at a speed of $10 \mathrm{~m} / \mathrm{s}$ along a horizontal, straight highway is accelerated by a 5000 N force parallel to the road. Neglecting the force of friction, what is the acceleration of the car? [$5 \mathrm{~m} / \mathrm{s}$]
12. A 3.0 kg mass is suspended from a block placed on a table. The block then experiences an acceleration of $5.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the block? (Neglect friction) [2.9 kg]

13. A newspaper delivery boy uses a small wagon with a mass of 3.0 kg to pull his newspapers without friction. Using the handle, he pulls the wagon with a force of 5.0 N at an angle of inclination of 40.0° with respect to the horizontal.

What is the acceleration of the wagon? $\left[1.3 \mathrm{~m} / \mathrm{s}^{2}\right]$
14. A 10.0 kg box is pulled across a level floor, where the coefficient of friction is 0.350 . What horizontal force is required for an acceleration of $2.00 \mathrm{~m} / \mathrm{s}^{2}$? [54.3 N]
15. The incline is 1.2 m long and the cart begins at an elevation of $60 . \mathrm{cm}$ above the table. Ignoring frictional forces, at what speed is the cart going when it reaches the bottom? [$3.5 \mathrm{~m} / \mathrm{s}$]

16. A car with a mass of $1.0 \times 10^{3} \mathrm{~kg}$ and moving at a speed of $30.0 \mathrm{~m} / \mathrm{s}$ comes to rest over a distance of 1.0×10^{2} metres. What is the force of friction (acting on the wheels of the car) which causes the car to stop? [4500 N]
17. A package falls from an airplane with an initial velocity of $5 \mathrm{~m} / \mathrm{s}$ at an altitude of 500 m . What distance does it fall during the third second? [30 m]
18. The following graph shows the variation of the velocity of a train as a function of time.

What does the area of the shaded part of the graph represent?
A) The acceleration of the train between times t_{i} and t_{t}.
B) The average velocity of the train between times t_{i} and t_{f}
C) The change of velocity of the train between times t_{i} and t_{f}.
D) The distance covered by the train between times t_{i} and t_{t}.
19. The following graph shows the change in the velocity of a train, moving in a straight line path, as a function of time.

Which one of the following graphs shows the change of acceleration of the train as a function of time?
A)

C)

B)

D)

20. The following graph shows the position as a function of time of a cyclist going in a straight-line path.

What is the velocity of the cyclist at 25 seconds? [-5 m/s]
21. A car is driving in a straight-line path. Its change of position as a function of time is given by the following graph.

What is the displacement of the car from 0 to 13 seconds? [240 m]
22. An automobile is being driven at a constant velocity on a straight road. The car slows down when it comes to a village, comes to a stop at an intersection, then sets off again and accelerates at a constant rate leaving the village.

Show what has occurred by constructing the velocity-time graph for the automobile.
23. A ski lift moves up and down along a hill according to the following V - t graph. Unfortunately, it stalls on the way down at $t=200 \mathrm{~s}$.

At this point, the rescue team must decide whether the skiers are closer to the top or the bottom of the hill.

Using the V - t graph, determine whether the ski lift is closer to the top or to the bottom of the hill and by how much. [closer to bottom by 40 m]

Ski Lift Velocity Graph

Velocity (m / s)

24. Which of the following graphs could be associated with a body in free-fall?
A)

C)

B)

D) $a\left(\mathrm{~m} / \mathrm{s}^{2}\right) \boldsymbol{A}$

25. Ali is participating in the Tour de l'Île bicycle marathon held each year on the island of Montreal. The following velocity versus time graph represents Ali's course over a period of 1800 seconds.

Velocity-time Graph of Ali's Bicycle Race

From the graph determine the following:

1. Ali's acceleration at 400 seconds. [0]
2. Ali's acceleration at 1200 seconds. [- $0.75 \mathrm{~m} / \mathrm{s}$]
3. Ali's displacement during the period between 800 seconds and 1400 seconds into the ride. [3000 m]
4. A car and a truck leave a traffic light at the same time, travelling in the same direction. The graphs below illustrate their motions.

How many metres apart are the two vehicles after 30 seconds? [25 m]

