Extra Physics Practice

1. Two blocks are in contact on a frictionless table. A horizontal force
 is applied to
one block, as shown below. (a) If $m_{1}=2.3 \mathrm{~kg}, \mathrm{~m}_{2}=1.2 \mathrm{~kg}$, and $\mathrm{F}=3.2 \mathrm{~N}$, find the acceleration of the two blocks.
$\mathrm{F}=\mathrm{ma}$
$3.2 \mathrm{~N}=(2.3+1.2) \mathrm{kg} \mathrm{a}$
$a=3.2 / 3.5=0.91 \mathrm{~m} / \mathrm{s}^{2}$
(b) What force of contact is there between m_{1} and m_{2} ?

Skip
2. A 100 kg crate is sliding down the frictionless 30° ramp shown below.

a) With what force is it sliding down?
$\mathrm{F}=\mathrm{mg} \sin \theta=100 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30=490 \mathrm{~N}$
b) Calculate its acceleration without using 100 kg .
$m g \sin \theta=m a$
$g \sin \theta=a=9.8(\sin 30)=4.9 \mathrm{~m} / \mathrm{s}^{2}$
c) Suppose you wanted to apply a horizontal force to this block to stop it from sliding down. How big would the force have to be? (Hint: use trig to find an expression for x and equate it to its opposite force)

$\mathrm{x} / \mathrm{F}=\cos 30$
$x=F \cos 30$
but this force has to oppose mgsin θ, so
$\mathrm{F} \cos 30=m g \sin \theta=490$ from previous calculation
$\mathrm{F}=490 / \cos 30=566 \mathrm{~N}$

