Extra Practice with Radioactivity

1. Given:

$$
\begin{aligned}
& { }_{11}^{22} \mathrm{Na} \\
& { }_{11}^{22} \mathrm{Na}+{ }_{10}^{22} \mathrm{Ne}+\mathrm{e}^{+}+\mathrm{ve}_{\mathrm{e}} \\
& { }_{10}^{22} \mathrm{Ne}+\mathrm{ve}_{\mathrm{e}}
\end{aligned}
$$

a) What particle is being emitted by ${ }^{22} \mathrm{Na}$ in the first reaction? What transformation is taking place in the nucleus?

A positron Is being emitted. A proton is being lost and converted into a neutron and a positron. Notice that the mass number does not change since a neutron takes the place of a proton:

$$
{ }_{1}^{1} p \rightarrow{ }_{0}^{1} n+{ }_{1}^{0} e
$$

b) What particle is being absorbed by the second equation?

A beta particle.

c) How do you know these are not chemical reactions?

Elements are changing into different elements.
2. If a nuclear reaction destroys 2.8×10^{-7} moles of ${ }^{2} \mathrm{H}$, how much energy is released?
$\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
2.8×10^{-7} moles $(2 \mathrm{~g} / \mathrm{mole})=5.6 \times 10^{-7} \mathrm{~g}$
$5.6 \times 10^{-7} \mathrm{~g}(1 \mathrm{~kg} / 1000 \mathrm{~g})=5.6 \times 10^{-10} \mathrm{~kg}$
$E=m c^{2}=5.6 \times 10^{-10} \mathrm{~kg}\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=5.04 \times 10^{7} \mathrm{~J}$, enough energy to power your computer for almost 70 hours---not bad from such a small amount of hydrogen.
3. Use the following
 diagram to write three balanced nuclear equations.

$$
\begin{gathered}
{ }_{93}^{238} \mathrm{~Np} \rightarrow{ }_{94}^{238} \mathrm{Pu}+{ }_{-1}^{0} e \\
{ }_{92}^{233} \mathrm{U} \rightarrow{ }_{92}^{232} U+{ }_{0}^{1} n \\
{ }_{90}^{231} \mathrm{Th} \rightarrow{ }_{91}^{231} \mathrm{~Pa}+{ }_{-1}^{0} e
\end{gathered}
$$

