In Class Review

1. a) Temperature influences solubility which influences how many ions end up in solution, which in turn affects Ksp.

b) Without a saturated solution, there would not be an equilibrium between the solid and the ions in solution.

c)

	Ra(IO ₃) ₂ (s)	Ra ⁺² (it's an alkaline earth; see periodic table)	2 IO ₃
			0
C (what dissolves)		1.686 X10 moles/L	2 X 1.686 X10 moles/L
E		3812ppm=3.812 g/L(mole/ 226 g) (sorry we had wrong molar mass in class)=1.686 X10 ⁻² moles/L	2 X 1.686 X10 ⁻² moles/L

Ksp =[Ra^{+2}][IO_3^{-}]²=[1.686 X10⁻²moles/L][2 X 1.686 X10⁻²moles/L]² = 1.9 X 10⁻⁵

d) If it was endo a lower temperature would have shifted the equilibrium towards the solid, lowering ion concentration and lowering Ksp.

- 2. a) yes because we are running out of reactants, lowering the concentration adn therefore lowering the rate.
 - b) the rate of change of hydrochloric acid

$$= \frac{0.244 - 0.245}{7.0 - 3.5} = \frac{-0.001}{3.5} = -2.857X10^{-4} moles/min HCl$$
$$= -\frac{2.857X10^{-4}moles}{min} HCl \frac{1 CO2}{-2 HCl mole} \frac{44g}{60s} = 1.0 X10^{-4} g of CO2/s$$

3. $\Delta H = -542 = \Delta H_{bb} - \Delta H_{bf}$

-542 =436 +158 -2x, x = HF's bond energy x = 568 kJ

4. 14.0 g N₂ = 0.50 moles

 $P_{N2} = (n_{N2}/n_T)(P_T) = (0.50/0.60)(101.3 \text{ kpa}) = 84 \text{ kPa}$

5.

	HX _(aq)	$H^+_{(aq)}$	X ⁻ (aq)
Ι	2/10 = 0.2 moles/L	0	0
C (what dissolves)	10 ^{-5.9}	10 ^{-5.9}	10 ^{-5.9}
E	0.2-10 ^{-5.9}		10 ^{-5.9}
		рН=14-рОН=14-	
		8.1=5.9	
		$H^{+} = 10^{-pH} = 10^{-5.9}$	

 $K_a = (10^{-5.9})(10^{-5.9})/(0.2 - 10^{-5.9}) = 7.9 \times 10^{-12}$

So it's weaker than the acid whose K_A is greater at 1.8 X10⁻⁵.

6. Curve 2 produces more gas per unit of time, so it must have enjoyed the benefits of a lemonade, a spot in the shade and a catalyst.

Curve 1 no catalyst