Environmental Science and Technology - 558-404

Section 1 Multiple Choice
(3 marks each)
Shade in the letter corresponding to the best choice on this questionnaire.

1. Which of the following is the correct notation for an atom with 8 protons, 10 electrons and 9 neutrons?

Charge $=$ protons - electrons $=8-10=-2$
Mass number $=$ protons + neutrons $=8+9=17$
(A) ${ }^{16} \mathrm{O}^{2-}$
(B) ${ }^{16} \mathrm{O}^{2+}$
(C) ${ }^{17} \mathrm{~F}^{-}$
(D) ${ }^{17} \mathrm{O}^{2-}$
(E) ${ }^{17} F^{2-}$
2. If ${ }^{13} \mathrm{~N}$ is radioactive and reacts with oxygen at high temperatures, which of the following is most likely to be FALSE about other isotopes of nitrogen?
(A) ${ }^{14} \mathrm{~N}$ also reacts with oxygen at high temperatures.
(B) Nitrogen gas containing ${ }^{15} \mathrm{~N}$ has a higher density than gas with ${ }^{13} \mathrm{~N}$.
(C) Other isotopes of nitrogen have different mass numbers.
(D) ${ }^{15} \mathrm{~N}$ also has to be radioactive.
3. Which of the following statements concerning trends is TRUE?
(A) Nitrogen has a larger atomic radius than lithium.
(B) Oxygen is more electronegative than fluorine.
(C) Neon has a lower ionization energy than fluorine.

(D) Sodium has a lower melting point than lithium.

Environmental Science and Technology - 558-404

4. When the following equation, representing the neutralization of dark soda's phosphoric acid by calcium hydroxide(limewater), is balanced the sum of the coefficients, a, b, and c will equal \qquad ?

$$
\text { _a__ } \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}+\text { __b_Ca(OH) } 2_{(\mathrm{aq})} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}+\ldots c _\mathrm{H}_{2} \mathrm{O}
$$

(A) 11
(B) 12
(C) 13
(D) 14
5. If an unknown metal, Q, from calcium's family reacts with an unknown non metal, X, from chlorine's family, then the compound will have which empirical formula?
Q^{2+} and X ; total charge must be zero, so
(A) $\quad \mathrm{Qx}$
(B) $\quad Q_{2} X$
(C) $\quad Q x_{2}$
(D) $\quad Q X_{3}$
6. Based on its Lewis structure, which of the following will in forming diatomic molecules share two of its valence electrons with another atom of its kind to form a double bond?
C will make 4 bonds or a quadruple bond; N with a valence of 5 can share 3 for a triple bond; etc
(A) C
(B) N
(C) O
(D) F
7. Some compounds that are found in your home include potassium iodide(added to salt), silicon dioxide(in glass), calcium sulfate(in gyprock of your walls), and sodium hydroxide(in oven cleaner). What are the correct formulas for these compounds?
(A) $\mathrm{KI}, \mathrm{SiO}_{2}, \mathrm{CaSO}_{4}, \mathrm{NaOH}$
(B) $\mathrm{KI}, \mathrm{SiO}_{2}, \mathrm{CaSO}_{3}, \mathrm{NaOH}$
(C) $\mathrm{KI}, \mathrm{SiO}_{2}, \mathrm{CaSO}_{4}, \mathrm{Na}_{2} \mathrm{O}$
(D) $\mathrm{KI}_{2}, \mathrm{Si}_{2} \mathrm{O}, \mathrm{CaSO}_{4}, \mathrm{Na}_{2} \mathrm{O}$
(E) $\mathrm{KI}_{2}, \mathrm{Si}_{2} \mathrm{O}, \mathrm{CaSO}_{3}, \mathrm{NaOH}$
8. Which of the following corresponds to the nuclear composition and electron arrangement of ${ }^{41} \mathrm{Ca}$?

(A)	$20 p, 21 n$	$2 e) 8 e) 8 e) 2 \mathrm{e}$
(B)	$21 \mathrm{p}, 20 \mathrm{n}$	$2 \mathrm{e}) 8 \mathrm{e}) 8 \mathrm{e}) 2 \mathrm{e}$
(C)	$20 \mathrm{p}, 21 \mathrm{n}$	$2 \mathrm{e}) 8 \mathrm{e}) 10 \mathrm{e}$
(D)	$21 \mathrm{p}, 20 \mathrm{n}$	$2 \mathrm{e}) 8 \mathrm{e}) 10 \mathrm{e}$

9. Which of the following will NOT have the same number of atoms as 12.000 grams of ${ }^{12} \mathrm{C}$?
(A) 6.02×10^{23} atoms of Si
(B) 23 g of Na
(C) 6.02×10^{23} molecules of O_{2}
(D) 1.0 g of H2

It's because there are 2 atoms in every molecule, so 6.02×10^{23} molecules of O_{2} will have $2 \times 6.02 \times 10^{23}$ atoms
10. How many grams of NaOH will be left over if a 10.0 ml sample of a $0.50 \mathrm{~mol} / \mathrm{L}$ solution evaporates?
$(0.010 \mathrm{~L})(0.50 \mathrm{~mol} / \mathrm{L}) *(40 \mathrm{~g} / \mathrm{mole})=$
(A) 0.005
(B) 0.2
(C) 200
(D) 400
11. The algae in water average 0.03 ppm of a certain toxin, whose molar mass is $120 \mathrm{~g} /$ mole. If the bioconcentration factor is 25 , what is the concentration of that toxin in the water itself? Express your answer in moles of toxin per liter of aqueous solution.

$0.03 \mathrm{ppm} / \mathrm{x}=25$
$0.03 / 25=0.0012 \mathrm{mg} / \mathrm{L}$ for water
$0.0012 \mathrm{mg} / \mathrm{L}$ for water $\left(\frac{\mathrm{g}}{1000 \mathrm{mg}}\right)\left(\frac{\text { mole }}{120 \mathrm{~g}}\right)=$
(A) $1.0 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$
(B) $1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
(C) $1.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
(D) $1.0 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$
12. What causes a society to increase its ecological footprint?

Making a big eco-footprint implies that you consume excessive energy and pollute. Pollution comes from wasting atoms that are part of resources such as metal compounds
(A) Inefficient use of water and resources
(B) Inefficient use of energy and resources
(C) Efficient use of water and resources
(D) Efficient use of energy and resources
13. Which of the following will be a weak electrolyte?
(A) $\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
(B) $\mathrm{HCl}_{(\text {aq) }} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
(C) $\mathrm{NaBr}_{(\text {aq })} \rightarrow \mathrm{Na}^{+}+\mathrm{Br}^{-}$
(D) $\mathrm{CH}_{2} \mathrm{O}_{2} \leftrightharpoons \mathrm{H}^{+}+\mathrm{CHO}_{2}^{-}$
14. Which of the following is a fusion reaction?
(A) is beta decay from the naturally occurring radioactive potassium in living things. (B) is fission; (D)positron emission, so the answer is (C)

Environmental Science and Technology - 558-404

(A) ${ }_{19}^{40} \mathrm{~K} \rightarrow{ }_{20}^{40} \mathrm{Ca}+{ }_{-1}^{0} e$
(B) ${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{90}^{234} \mathrm{Th}+{ }_{0}^{0} \gamma$
(C) ${ }_{2}^{3} \mathrm{He}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{0} e$
(D) ${ }^{12}{ }_{7} N \rightarrow{ }^{12}{ }_{6} C+{ }_{1} e+\nu$
15. Which has the biggest weight?
(A) A 3.5 kg mass on the earth where $\mathrm{g}=9.81 \mathrm{~N} / \mathrm{kg}$
(B) An 18.06 kg on the moon where $\mathrm{g}=1.63 \mathrm{~N} / \mathrm{kg}$
(C) 20 N weight
(D) 1810 g on the moon where $\mathrm{g}=1.63 \mathrm{~N} / \mathrm{kg}$

Here's why: $F=m g$
(A) $3.5 \mathrm{~kg} * 9.81 \mathrm{~N} / \mathrm{kg}=34 \mathrm{~N}$
(B) $18.06 \mathrm{~kg} * 1.63 \mathrm{~N} / \mathrm{kg}=29.4 \mathrm{~N}$
(C) 20 N weight
(D) $1.816 \mathrm{~kg} * 1.63 \mathrm{~N} / \mathrm{kg}=2.96 \mathrm{~N}$

Environmental Science and Technology - 558-404

Section 2 Show all work. (5 marks each)
16. Draw the appropriate Lewis structure for each of the following chemical formulas, keeping in mind that one or more of the compounds may be ionic. ($\mathrm{a}, \mathrm{b}, \mathrm{c}=1$ mark; $\mathrm{d}=2$ marks)

Environmental Science and Technology - 558-404

17. 294000 g of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})\right.$) have been spilled into a small pond. The acid was neutralized with NaHCO_{3} according to the following reaction:
$\mathrm{H}_{3} \mathrm{PO}_{4(\text { aq })} \quad+\quad 3 \mathrm{NaHCO}_{3(\mathrm{aq})} \quad \rightarrow \quad \mathrm{Na}_{3} \mathrm{PO}_{4(\text { aq })}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+3 \mathrm{CO}_{2(\mathrm{~g})}$

It took 4500 L of sodium hydrogen carbonate solution $\left(\mathrm{NaHCO}_{3(a q)}\right)$ to eliminate the acid.
What was the concentration in $\mathrm{g} / \mathrm{L}^{\text {of }} \mathrm{NaHCO}_{3(\mathrm{aq)}}$ that was added to the pond in order to neutralize all of the spilled phosphoric acid?

$$
\begin{aligned}
& 290000 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}\left(\frac{\mathrm{~mole}}{98 \mathrm{~g}}\right)=3000 \text { mole } \mathrm{H}_{3} \mathrm{PO}_{4} \\
& 3000 \text { mole } \mathrm{H}_{3} \mathrm{PO}_{4}\left(\frac{3 \text { mole } \mathrm{NaHCO}_{3}}{1 \text { mole } \mathrm{H}_{3} \mathrm{PO}_{4}}\right)=9000 \text { moles } \mathrm{NaHCO}_{3} \\
& 9000 \text { moles } \mathrm{NaHCO}_{3}\left(\frac{84 \mathrm{~g}}{\text { mole }}\right)=756000 \mathrm{~g} \mathrm{NaHCO}_{3} \\
& \mathrm{C}=\mathrm{m} / \mathrm{V}=756000 \mathrm{~g} \mathrm{NaHCO} 3 / 4500 \mathrm{~L}=168 \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

Answer: \qquad
18. Neon has two major isotopes, ${ }^{20} \mathrm{Ne}$ and ${ }^{22} \mathrm{Ne}$.
90.0% is ${ }^{20} \mathrm{Ne}$ and the rest is ${ }^{22} \mathrm{Ne}$.

What is the approximate average atomic mass of neon?
$0.90 *(20)+0.10(22)=20.2 \mathrm{amu}$

Answer: \qquad
19. The pH of a solution was originally 7.8. Without buffer, a small amount of acid made the concentration of H^{+}increase by a factor of 100. Find the new pH of the solution. Show work.
$\left[\mathrm{H}^{+}\right]=10^{-p H}=10^{-7.8} \mathrm{M}$
New concentration $=10^{-7.8} M * 100=10^{-5.8}$ or $1.58 \ldots \times 10^{-6} M$
New $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[1.58 \ldots \times 10^{-6} M\right]=5.8$

Environmental Science and Technology - 558-404

20. When 2.0 moles of hydrogen bromide are formed, the reaction releases heat to its surroundings according to the following equation:
$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}+103 \mathrm{~kJ}$

How many kJ will be released if 8.1 g of HBr are formed?
$8.1 \mathrm{~g} \mathrm{HBr}\left(\frac{\text { mole }}{81 \mathrm{~g}}\right)=0.1$ mole HBr
0.1 mole $H B r \frac{103 \mathrm{~kJ}}{2 \text { mole } \mathrm{HBr}}=5.2 \mathrm{~kJ}$
21. In a liter of a certain solution there are 2.0 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$. We then add 300.0 ml of water. Calculate the molarity of the diluted solution.
2.0 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\left(\frac{\text { mole }}{294.196 \mathrm{~g}}\right)=0.0067981889624604005492936681668$ mole
$V=1.0 L+.30 L=1.3 L$
$\mathrm{C}=\mathrm{n} / \mathrm{V}=\frac{0.0067981889624604005492936681668}{1.3}=0.0052 \mathrm{M}$

Environmental Science and Technology - 558-404

22. The lethal dose for heroin is $22 \mathrm{mg} / \mathrm{kg}$. A 78 kg addict injected himself with such a dose. Each syringe usually contains on average 429 mg of heroin. How many fresh needle marks were found on the addict's arm by the coroner (how many times did the addict recently inject himself with a syringe)?

78 kg * $22 \mathrm{mg} / \mathrm{kg}=1716 \mathrm{mg}$
$1716 \mathrm{mg} /(429 \mathrm{mg} /$ syringe $)=4$ syringe fills $=4$ needles $=4$ needle marks $=1$ dead addict, who will now miss out on science, ice cream, soft kisses and the joy of raising a happy kid.
23. What is the specific heat of a substance with a mass of 250.0 g and which requires 5.25 kJ to raise its temperature by $15.0^{\circ} \mathrm{C}$?
$\mathrm{Q}=\mathrm{mc} \Delta T$
$5250 \mathrm{~J}=(250.0 \mathrm{~g})(c)\left(15.0^{\circ} \mathrm{C}\right)$
$C=1.4 \mathrm{~J} /\left(g^{\circ} \mathrm{C}\right)$
24. Classify as exothermic or endothermic.
a) $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ \qquad exo
b) Freezing of water \qquad exo (water steals and absorbs heat when it melts, which is the opposite of freezing) \qquad
c) Burning sugar \qquad exo \qquad
d) $A+Q \rightarrow A Q+$ heat \qquad exo
e) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ dissolving, which makes the beaker cold \qquad endo \qquad

Environmental Science and Technology - 558-404

25. How fast is the rock travelling when it is 3.0 m (halfway) above the floor? No mass is needed to calculate this problem. Show why.

$\mathrm{mgh}_{1}+0.5 \mathrm{mv}_{1}{ }^{2}=\mathrm{mgh}_{2}+0.5 \mathrm{mv}_{2}{ }^{2}$
$\mathrm{gh}_{1}+0.5 \mathrm{v}_{1}{ }^{2}=\mathrm{gh}_{2}+0.5 \mathrm{v}_{2}{ }^{2}$
$9.8(6)+0.5(0)^{2}=9.8(3)+0.5 \mathrm{v}_{2}{ }^{2}$
$v_{2}=7.7 \mathrm{~m} / \mathrm{s}$

Environmental Science and Technology - 558-404

26. a) If a 75 kg man walks up the hill, ignoring friction, what continuous force must he apply to climb the hill if the angle shown is 55° ? (3 marks)

$F=m g \sin \varnothing=m g \sin (90-\theta)=75 \mathrm{~kg}(9.8 \mathrm{~N} / \mathrm{kg})^{*} \sin (90-55)=420 \mathrm{~N}$
b) Calculate the work done by the man if $d=60 . \mathrm{m}$. (2 marks)
$W=F^{*} d=420 N(60 m)=25000 J$
