Nice Problem! Thanks for making my brain work for the first time in 24 hours.
Remember $\mathrm{P}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}=\mathrm{n}_{\mathrm{A}} \mathrm{RT}$, so $[\mathrm{A}]=\mathrm{n}_{\mathrm{A}} / \mathrm{V}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}} / \mathrm{RT}$
Similarly $[B]=n_{B} / V_{B}=P_{B} / R T$
$[\mathrm{C}]=\mathrm{n}_{\mathrm{C}} / \mathrm{V}_{\mathrm{C}}=\mathrm{P}_{\mathrm{C}} / \mathrm{RT}$
$[D]=n_{D} / V_{D}=P_{D} / R T$
Hence,
$\mathrm{Kc}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$ for $\quad \mathrm{aA}+\mathrm{bB}=\mathrm{cC}+\mathrm{dD}$

Substituting the first paragraph's equations into the above:
$\mathrm{Kc}=\frac{\left[P_{C} / R T\right]^{c}\left[P_{D} / R T\right]^{d}}{\left[P_{A} / R T\right]^{a}\left[P_{B} / R T\right]^{b}}=\frac{P_{C} P_{D}}{P_{A} P_{B}} \frac{(R T)^{a}(R T)^{b}}{(R T)^{c}(R T)^{d}}$
But Kp $=\frac{P_{C} P_{D}}{P_{A} P_{B}}$, so
$\mathrm{Kc}=\mathrm{Kp} \frac{(R T)^{a}(R T)^{b}}{(R T)^{c}(R T)^{d}}$
Isolate Kp:
$\mathrm{Kp}=\mathrm{K}_{\mathrm{C}} \frac{(R T)^{c}(R T)^{d}}{(R T)^{a}(R T)^{b}}=\mathrm{K}_{\mathrm{C}} \frac{(R T)^{c+d}}{(R T)^{a+b}}$
$\mathrm{Kp}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{(\mathrm{c}+\mathrm{d})-(\mathrm{a}+\mathrm{b})}$
$\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}}$

