<u>Chemistry</u> <u>Killer and Not-so-Difficult Ksp Problems From Various Tests</u>

1. a) Calculate the solubility product constant(Ksp) for manganese(II) hydroxide,

 $Mn(OH)_2$, if 100.0 mL of a saturated solution of manganese(II) hydroxide was found to contain 3.28 X 10⁻⁴ grams of manganese(II) hydroxide dissolved in it.

Manganese has a charge of +2

		Mn(OH) _{2(s)}	Mn ⁺² (aq)	+ 2 OH ⁻ (aq)
Mole	I		0	0
/L	C	3.28 X 10 ⁻⁴ grams/(88.95g/mole)/0.100 L= 3.687464868 X 10 ⁻⁵	3.687464868 X 10 ⁻⁵	3.687464868 X 10 ⁻⁵ *2 = 7.374929736X10 ⁻⁴
	Ε		3.687464868 X 10 ⁻⁵	7.374929736X10 ⁻⁴

Ksp = $[Mn^{+2}] [OH^{-}]^2$ = $[3.687464868 \times 10^{-5}] [7.374929736\times 10^{-4}]^{2=}$ = 2.01 X10⁻¹³

b) You are concerned about disposing a saturated solution of $Mn(OH)_2$, because of Mn^{+2} 's effects on wildlife and humans. What could be done to lower the concentration of Mn^{+2} ?

Raise the pH (raise concentration of OH-)

2. The watery portion of a 100.0 ml saturated solution of what was supposed to be cadmium arsenate, Cd₃(AsO₄)₂ is evaporated.
0.050 grams of Cd₃(AsO₄)_{2 (s)} were left behind after evaporation. Prove that it was not

really $Cd_3(AsO_4)_2$

The solubility product constant (Ksp) for cadmium arsenate is 2.20×10^{-33} .

		$Cd_3(AsO_4)_2$ (s) =	3 Cd ⁺² (aq)	$+ 2 \text{ AsO}_{4}^{-3}$ (aq)
	Ι		0	0
Mole	С	X	3 x	2x
/L	Ε		3 x	2x

Ksp = $[Cd^{+2}]^{3} [AsO_{4}^{-3}]^{2}$ 2.20 x 10⁻³³ = $[3x]^{3} [2x]^{2}$

108 \mathbf{x}^{5} = 2.20 x 10⁻³³ $\mathbf{x} = (2.20 \times 10^{-33} / 108)^{0.2}$ = 1.1529 X10⁻⁷ moles/L Cd₃(AsO₄)₂ = 1.1529 X10⁻⁷ moles/L Cd₃(AsO₄)₂ (615.07g/mole)(0.100 L) = 7.0 X10⁻⁶ g

So there should have been only 7.0 X10⁻⁶ g, not 0.050 grams

3. a) Calculate the solubility product constant(Ksp) for PbCl_{2(s)}, if 50.0 mL of a saturated solution of lead(II) chloride was found to contain 0.2207 g of lead(II) chloride dissolved in it.

		$PbCl_{2(s)} =$	Pb ⁺² (aq)	+ 2 Cl ⁻ _(aq)
	Ι		0	0
Mole	С	0.2207	0.01587141778	2*0.01587141778
/L		g/278.11g/mole/0.050		=0.03174283556
		L=0.01587141778		
	E		0.01587141778	0.03174283556

 $Ksp = [Pb^{+2}] [C1^{-}]^{2}$ = [0.01587141778] [0.03174283556]^{2} =1.60 X10^{-5}

b) You are concerned about disposing a saturated solution of $PbCl_2$ because of Pb^{+2} effects on wildlife and humans. What could be done to lower the concentration of Pb^{+2} ?

Add chloride

c) What could happen in the environment that would increase the concentration of Pb^{+2} ?

precipitation of chloride by another ion; more PbCl₂ dissolving

 If 55 mg of lead (II) sulfate , PbSO₄, is placed in 250.0 mL of pure water, how much PbSO₄ will remain undissolved? The solubility product constant (Ksp) for PbSO₄ is 2.53 x 10⁻⁸.

		$PbSO_{4(s)} =$	Pb ⁺² (aq)	$+ SO_4^{-2}$ (aq)
	Ι		0	0
Mole	С	Х	Х	Х
/L	E		Х	Х

$$\mathrm{Ksp} = [\mathbf{Pb}^{+2}] [\mathrm{SO}_4^{-2}]$$

2.53 x $10^{-8} = x^2$ x = 1.590597372 X 10^{-3} mole/L x = 1.590597372 X 10^{-3} mole/L(303.26 g/mole)(0.250 L) = 0.01205911398 g

= 12.1 mg

Undissolved = 55 - 12.1 mg = 43 mg

5. Estimate the solubility of barium sulfate $(BaSO_4)$ in a solution that already has 0.020 moles/L of sulfate (SO_4^{-2}) initially. The solubility product constant (Ksp) for barium sulfate is 1.1×10^{-10} .

		$BaSO_{4(s)} =$	Ba ⁺² (aq)	$+ SO_4^{-2}$ (aq)
	Ι		0	0.020
Mole	С	X	Х	Х
/L	E		Х	x + 0.020

 $Ksp = [Ba^{+2}] [SO_4^{-2}]$ 1.1 x 10⁻¹⁰ = x (x + 0.020) x² + 0.020 x - 1.1 X 10⁻¹⁰ = 0. x = 5.5 X 10⁻⁹ moles BaSO₄ /L