Basic Problems:

1. $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
$=500 \mathrm{~g}\left(4.19 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)\right)(4-18)^{\circ} \mathrm{C}$
$=-29330.00 \mathrm{~J}$
With sig figs: $-3 \times 10^{4} \mathrm{~J}$
2. $Q=\operatorname{mc} \Delta T$

$$
14700 \mathrm{~J}=250\left(4.19 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)\right)(\mathrm{x}-24)^{\circ} \mathrm{C}
$$

$\mathrm{x}=38^{\circ} \mathrm{C}(2 \mathrm{SF})$
3. $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
$=200000 \mathrm{~g}\left(4.19 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)\right)(60-15){ }^{\circ} \mathrm{C}$
$=3.8 \times 10^{7} \mathrm{~J}$
$=4 \times 10^{7} \mathrm{~J}(1 \mathrm{SF})$

Mixing Problems

4. What mass of copper, originally at $50.0^{\circ} \mathrm{C}$, must be added to 1.0 kg of 10.0 C water to raise its temperature to $20.0^{\circ} \mathrm{C}$? [sp heat for $\mathrm{Cu}=0.39 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$]

$$
-1 * m * 0.39 *(20-50)=1000 * 4.19 *(20-10)
$$

3581.196581g

With sig figs: $3.6 \mathrm{X} 10^{3} \mathrm{~g}$
5. A 450 mL sample of water is originally at 25.0 C. How cold will it get if we add 300 mL of $0.5^{\circ} \mathrm{C}$ water to that sample?

$$
-450 * 4.19 *(x-25)=300 * 4.19 *(x-0.5)
$$

$$
15.2{ }^{\circ} \mathrm{C}=20^{\circ} \mathrm{C}(1 \mathrm{SF})
$$

6. $\mathrm{c}=25 / \mathrm{M}=25 / 65.3=0.38 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
$\mathrm{c}=25 / \mathrm{M}=25 / 195=0.13 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)$
$\mathrm{c}=25 / \mathrm{M}=25 / 48=0.52 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
7. The one with the LOWEST molar mass because if $\mathrm{Mc}=25$, then $\mathrm{c}=25 / \mathrm{M}$. A smaller value of M will make c bigger.
8.

$$
\mathrm{m}_{1} \mathrm{c}_{1} \Delta \mathrm{~T}_{1}=-\mathrm{m}_{2} \mathrm{c}_{2} \Delta \mathrm{~T}_{2}
$$

But $m_{1}=\mathrm{m}_{2}$ and it's the same c !
So mc cancels and $\Delta \mathrm{T}_{\text {cold }}=-\Delta \mathrm{T}_{\text {hot }}$
$\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{1 \text { cold }}\right)=-\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{1 \text { hot }}\right)$
$2 \mathrm{~T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{i}}$ cold $+\mathrm{T}_{\mathrm{i}}$ hot
$\mathrm{T}_{\mathrm{f}}=\left(\mathrm{T}_{\mathrm{i}}\right.$ cold $+\mathrm{T}_{\mathrm{i}}$ hot $) / 2$ or the average.

