Moles for Mummies

It seems like a tough topic, but soon you'll say, "My God, a mummy can learn this!" Equation to represent: "Each mummy gets two \quad Equation to represent: 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ people scared"
How many mummies are needed to scare 8 people?
$\frac{1}{x}=\frac{2}{8}$
$\frac{1}{x}$

Cross multiply:

$$
2 x=8
$$

Unit Conversion Method(ratio):

$$
8 \text { scared people }\left[\frac{1 \text { mummy }}{2 \text { scared people }}\right]=
$$

$8 \times 1 \div 2=4$ mummies

Notice there is no equal sign; it's just a whole number multiplied by a fraction. The "scared people" goes into the denominator to cancel the "scared people" attached to the number 8.

How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ must react to produce 8 moles of water?

Proportion method:

$\mathrm{H}_{2} \mathrm{SO}_{4}$ $\mathrm{H}_{2} \mathrm{O}$
$\frac{1}{x}$ $\frac{2}{8}$

Cross multiply:

$$
x=4 \text { mummies }
$$

$$
\begin{gathered}
2 x=8 \\
x=4 \text { moles of } \mathrm{H}_{2} \mathrm{SO}_{4}
\end{gathered}
$$

Unit Conversion Method(ratio):

$$
8 \text { moles } \mathrm{H}_{2} \mathrm{O}\left[\frac{1 \mathrm{H}_{2} \mathrm{SO}_{4}}{2 \mathrm{H}_{2} \mathrm{O}}\right]=
$$

$$
8 \times 1 \div 2=4 \text { moles } \mathrm{H}_{2} \mathrm{SO}_{4}
$$

But remember: you can only compare moles in a proportion; you can't assume those numbers mean grams, and you can't mix grams with moles.
If you are given grams, convert first to moles.
If you are asked for grams, get moles from the ratio, and then convert.
Assumptions: We have a spooky and dark
Assumption: we have enough NaOH to
enough pyramid to let the mummies do their \quad completely use up the four moles of $\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$ scary stuff.
Mummies die again after scaring people.

