The Material World (MW)

A. Properties

- 3. Properties of solutions
 - d. Concentration
 - v. Determines the concentration of an aqueous solution (g/L, percentage, ppm, mol/L)
 - f. Strength of electrolytes
 - Qualitatively speaking, associates the strength of an electrolyte with its degree of dissociation

B. Changes

- 3. Chemical changes
 - c. Oxidation
 - iii. Associates a chemical equation in which oxygen is one of the reactants with one of the possible cases of an oxidation reaction

h. Salts

- i. Determines the molecular formula of the salt produced by the neutralization of a given acid and a given base
- i. Types of bonds
 - i. Covalent
 - Defines a covalent bond as a bond resulting from a sharing of electrons
 - Makes a schematic representation of a covalent bond
 - Identifies molecules that feature a covalent bond (e.g. N₂, CO₂)
 - ii. Ionic
 - Defines an ionic bond as a bond resulting from the gain or loss of electrons
 - Makes a schematic representation of an ionic bond
 - Identifies molecules that feature an ionic bond (e.g. NaCl, NH4OH)
 - Associates an ionic bond with an electrolytic substance
- I. Stoichiometry
 - Determines the quantities of reactants or products using stoichiometric calculations (gram or mole)
- m. Endothermic and exothermic reactions
 - i. Distinguishes an endothermic reaction from an exothermic reaction according to perceptible signs (e.g. temperature variations, emission of light)
 - ii. Distinguishes an endothermic reaction from an exothermic reaction according to the position of the energy term in the chemical equation
- 4. Nuclear changes
 - a. Nuclear stability
 - i. Explains nuclear stability as the case where the nucleus of the atom is held together by an optimal number of neutrons
 - b. Radioactivity
 - i. Defines radioactivity as the emission of particles or energy by the nuclei of atoms following nuclear transformations
 - ii. Associates the use of radioactivity with technological applications (e.g. radiotherapy, dating)
 - c. Fission and fusion
 - i. Distinguishes nuclear fission from nuclear fusion
- 5. Transformation of energy
 - e. Relationship between thermal energy, specific heat capacity, mass and temperature variation
 - i. Describes qualitatively the relationship between the change in thermal energy (quantity of heat) of a substance, its mass, its specific heat capacity and the variations in temperature to which it is exposed
 - ii. Applies the mathematical relationship between thermal energy, mass, specific heat capacity and temperature variation ($\Delta E = Q = mc\Delta T$)

- f. Effective force
 - i. Defines effective force as the component of the applied force parallel to the direction of travel
 - ii. Determines graphically the magnitude of the effective force in a given situation
- g. Relationship between work, force and distance travelled
 - Describes qualitatively the relationship between the work done, the force applied on a body and the distance travelled by the body
 - ii. Applies the mathematical relationship between work, effective force and distance travelled $(W = F\Delta d)$
- h. Relationship between mass and weight
 - i. Describes qualitatively the relationship between mass and weight
 - ii. Applies the mathematical relationship between mass and weight (Fg = mg)
- i. Relationship between potential energy, mass, acceleration and distance travelled
 - i. Describes qualitatively the relationship between the potential energy of a body, its mass, its gravitational acceleration and the distance it travels
 - ii. Applies the mathematical relationship between potential energy, mass, gravitational acceleration and the distance travelled (Ep = mgh)
- j. Relationship between kinetic energy, mass and speed
 - i. Describes qualitatively the relationship between the kinetic energy of a body, its mass and its speed
 - ii. Applies the mathematical relationship between kinetic energy, mass and speed (Ek = ½mv)
- k. Relationship between work and energy
 - i. Describes qualitatively the relationship between the work done on a body and the variation in energy within that body
 - ii. Applies the mathematical relationship between work and energy (W = ΔE)

C. Organization

- 1. Structure of matter
 - i. Neutron
 - i. Describes the position and electrical charge of the neutron in an atom
 - j. Simplified atomic model
 - i. Represents an atom of a given element using the simplified atomic model
 - I. Nomenclature and notation rules
 - i. Applies nomenclature and notation rules to name the molecule or write the molecular formula of binary compounds
 - m. Polyatomic ions
 - i. Recognizes the common polyatomic ions (e.g. NH_4^+ , OH^- , NO_3^- , CO_3^{-2} , SO_4^{-2} , PO_4^{-3}) by their name, their formula or their composition
 - n. Concept of the mole
 - i. Defines the mole as the unit of measure of the amount of a substance
 - ii. Expresses an amount of a substance in moles
 - o. Avogadro's number
 - i. Expresses a quantity of particles using Avogadro's number
- 2. Periodic classification
 - a. Atomic number
 - i. Associates the atomic number of an element with the number of protons it has
 - b. Isotopes
 - i. Defines isotopes as atoms of the same element whose nuclei have different numbers of neutrons and therefore different atomic masses
 - ii. Defines a radioactive isotope as an isotope whose atomic nucleus is unstable
 - c. Relative atomic mass
 - i. Explains qualitatively the concept of relative atomic mass
 - d. Periodicity of properties

i. Describes the periodicity of certain properties of elements (e.g. chemical reactivity, atomic radius, electronegativity)

F. Electricity and electromagnetism

- 1. Electricity
 - f. Kirchhoff's laws
 - i. Describes the distribution of current in various components of an electrical circuit
 - ii. Determines the value of the current flowing in various components of a series or parallel circuit
 - iii. Describes the distribution of the voltage across various components of an electrical circuit
 - iv. Determines the value of the voltage across various components of a series or parallel circuit
 - v. Determines the value of the equivalent resistance of a series or parallel circuit using Ohm's law and Kirchhoff's laws
 - g. Electrical field
 - i. Describes qualitatively the effect of an electrical field on electrically charged particles
 - h. Coulomb's law
 - i. Applies the mathematical relationship between the electrical force, the magnitude of the electrical charges and the distance separating these charges ($F = kq_1q_2/r^2$)
- 2. Electromagnetism
 - c. Magnetic field of a solenoid
 - i. Describes the magnetic field produced by a solenoid (right-hand rule or left-hand rule)
 - ii. Names ways of changing the intensity of the magnetic field produced by a solenoid (nature of the core, intensity of the current, number of turns)
 - iii. Explains the use of solenoids in technological applications (e.g. earphones, electric motor, magnetic crane)

The Living World (LW)

A. Diversity of life forms

- 1. Ecology
 - h. Ecological footprint
 - i. Explains the concept of ecological footprint
 - i. Ecotoxicology
 - i. Contaminant
 - Defines a contaminant as an agent that causes changes in the physical, chemical or biological properties of an environment or an organism
 - ii. Bioaccumulation
 - Defines bioaccumulation as the process by which a contaminant from the environment or food supply accumulates in an organism
 - Explains bioaccumulation in food chains (biomagnification)
 - iii. Bioconcentration
 - Defines bioconcentration as a special case of bioaccumulation by which an organism accumulates a contaminant through direct contact with its environment (from sources other than food)
 - iv. Toxicity threshold
 - Defines the toxicity threshold of a substance as the minimum concentration of a substance that produces a significant harmful effect in an organism (mg/kg of the organism's mass)
 - Describes factors that influence the toxicity of a contaminant (e.g. concentration, characteristics of the environment into which it is released, nature of the organisms with which it is in contact, duration of exposure)

3. Genetics

- a. Heredity
 - i. Defines heredity
- b. Gene
 - i. Defines a gene as being, in most cases, a DNA segment that carries the code for synthesizing one or more proteins
 - ii. Describes the composition (nitrogen bases, sugar, phosphate) and the overall structure (bonding of bases on the double helix) of a DNA molecule
- c. Character trait
 - i. Defines what an hereditary trait is
 - ii. Names hereditary traits in an individual or population
- d. Allele
 - i. Defines an allele as a possible form of a gene
- e. Homozygotes and heterozygotes
 - i. Defines a homozygote as an individual with two identical alleles for a particular character trait
 - ii. Defines a heterozygote as an individual with two different alleles for a particular character trait
- f. Dominant and recessive
 - i. Describes the phenomena of dominant and recessive character traits
- g. Genotype and phenotype
 - i. Defines genotype
 - ii. Defines phenotype
 - iii. Describes an individual's genotype and phenotype for a character trait (e.g. a bean with a Yellow phenotype may have a Yellow-Yellow genotype or a Yellow-Green genotype)
- h. Protein synthesis
 - i. Describes the role of DNA in protein synthesis
 - ii. Explains the phenomena of transcription and translation of a strand of DNA
- i. Crossbreeding
 - i. Explains the relationship between the crossbreeding carried out by humans on animals and plants and the desired traits obtained

The Earth and Space (ES)

A. Characteristics of the Earth

- 2. Lithosphere
 - m. Soil depletion
 - i. Explains how human activities contribute to soil depletion
 - n. Buffering capacity of the soil
 - i. Defines the buffering capacity of a soil as its ability to limit pH variations
 - ii. Explains the advantages of a good soil buffering capacity
 - o. Contamination
 - i. Names soil contaminants
 - p. Biogeochemical cycles
 - iii. Phosphorous cycle
 - Describes transformations related to the circulation of phosphorous (e.g. erosion of rocks, breakdown of fertilizers, metabolism of algae)
- 3. Hydrosphere
 - f. Contamination
 - i. Names water contaminants
 - g. Eutrophication
 - i. Explains the natural process of eutrophication of a body of natural water
 - ii. Explains how human activities accelerate the eutrophication of a body of natural water
- 4. Atmosphere
 - d. Atmospheric circulation
 - ii. Describes the effect of prevailing winds on the dispersal of air pollutants in a given region
 - f. Contamination
 - i. Names air contaminants

The Technological World (TW)

A. Graphical language

- f. Orthogonal projections
 - v. Interprets assembly drawings of technical objects consisting of a small number of parts
- i. Axonometric projection: exploded view (reading)
 - i. Names the characteristics of an exploded view
 - ii. Explains the purpose of exploded views (projection accompanying the assembly instructions or specifications for an object)
- I. Dimensional tolerances
 - i. Defines tolerance as the required manufacturing precision (dimensions indicated on the drawing, along with allowances)

B. Mechanical engineering

- 3. Engineering
 - d. Degree of freedom of a part
 - i. Explains the purpose of limiting motion (degree of freedom) in a technical object (e.g. some hinges limit how far a cupboard door can open, preventing it from hitting the wall)
 - g. Adhesion and friction of parts
 - Describes the advantages and disadvantages of the adhesion and friction of parts in a technical object
 - m. Construction and characteristics of motion transformation systems
 - ii. Explains the choice of a motion transformation system (screw gear, cams, connecting rods, cranks, slider-crank mechanism, rack-and-pinion drive, eccentric) in a technical object

C. Electrical engineering

- b. Conduction, insulation and protection
 - v. Uses the colour code to determine the electrical resistance of a resistor
 - vi. Describes the operation of a printed circuit
- c. Control
 - iii. Distinguishes between unipolar and bipolar switches
 - iv. Distinguishes between unidirectional and bidirectional switches
- e. Other functions
 - i. Describes the function of certain electronic components (condenser, diode)

D. Materials

- 2. Mechanical properties of materials
 - f. Heat treatments
 - i. Defines heat treatments as ways of changing the properties of materials (e.g. quenching increases hardness but fragility as well)

E. Manufacturing

- c. Shaping
 - i. Machines and tools
 - Associates shaping processes with the types of materials used (e.g. injection blow moulding is used to shape plastics)
 - Determines the appropriate shaping techniques based on direct observation of technical objects (e.g. some table legs are turned on a lathe)
- d. Manufacturing
 - i. Characteristics of laying out, drilling, tapping and threading
 - Associates laying out (marking) with saving materials, shaping techniques and the types of materials to be shaped
 - Describes the characteristics of the tools needed to shape a material to be machined (e.g. the tip of a metal drill is conical, while that of a wood drill is double fluted)

- e. Measurement
 - i. Direct measurement
 - Explains the purpose of direct measurement (using a ruler) to control the machining of a part
 - Explains the choice of the direct measurement instrument used (a vernier caliper is more precise than a ruler)

F. Biotechnology

- a. Processes
 - vi. Cloning
 - Defines cloning as a reproductive process that results in an identical copy of an organism, a tissue or a cell, whether genetically modified or not
 - Describes the main advantages and disadvantages of cloning
 - vii. Wastewater treatment
 - Describes treatments used to decontaminate wastewater
 - viii. Biodegradation of pollutants
 - Describes ways to promote biodegradation of pollutants (e.g. phytoremediation)