Review STE/ST Lab EXAM

Name

KEY CONCEPTS FROM STE LABS

- 1. Avogadro Number Lab
- From the positions of ¹²C⁺ and ¹H⁺ on the mass spectrum you can find out how much heavier ¹²C⁺ is compared to ¹H⁺.
- Since ¹H⁺is a proton and since we know the masses of the proton and the electron from Thompson, we can easily calculate the mass of a ¹²C atom.
- A mole is the number of atoms in 12.000 g of ¹²C
- 12.000 g/mole \div 1.993 X 10⁻²³ g/atom= 6.02 X10²³ atoms/mole
- 2. Baking Soda Lab NaHCO₃ + HCl \rightarrow H₂O + CO₂ + NaCl
- We added more than enough acid to eliminate all of theNaHCO₃ (weighed).
- All of the CO₂ escaped.
- But we were stuck with leftover HCl, NaCl and water.
- With heat, we drove off HCl and H₂O
- The blue -> red litmus paper test revealed that acid(HCI) was evaporating.
- Once we get NaCl's mass, we compared it to what stoichiometry predicted based on the moles of NaHCO₃ that were weighed.

• KEY CONCEPTS FROM ST LABS

- 1. Electrolysis of Water $2 H_2O \rightarrow 2 H_2 + O_2$
- Water can be split with electricity and the help of acid or salt
- When it dissociates, in theory, it should give a 2: 1 ratio of H₂ and O₂ gases to reflect the balanced equation
- But because of competing impurities in he water, usually less oxygen is produced.

2. Preparing a Solution

WDTA for a solid after using m=CV

and PTA for dilution

3. Carbon Cycle Lab

 By blowing into water or any aqueous solution we represented what happens when carbon dioxide from the atmosphere encounters water:

$$H_2O + CO_2 \rightarrow H_2CO_3$$

 In the presence of base (high pH) and calcium ions, the ions from the H₂CO₃ react and form calcium carbonate, which is found in shells.

 Both vinegar and H₂CO₃ are acids, so both change the colour of bromothymol blue towards yellow. But since H₂CO₃ is a weaker acid, it only goes to the inbetween colour of green.

Other Things You Should Know:

- 1. Conservation of mass principle, which applies to all physical and chemical changes. Atoms are not destroyed.
- 2. These types of examples:

If you are told that all nitrate compounds are soluble, then write a formula for the precipitation reaction involving:

$$AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow ____+$$

If you are told that all potassium compounds are soluble, then write a formula for the precipitation reaction involving:

The Na⁺ and Cl⁻ ions are still moving about freely and have not taken part in the reaction: these are the 'spectator ions'