STE Pretest 3.2

1. The force, F, between two objects with charge q_1 and q_2 , is given by:

 $F = \frac{k q_1 q_2}{r^2}$, where r = distance between the two charges in

meters

 $k = Coulomb's constant = 9 X 10^9 Nm^2/C^2$.

Charges of 3 X 10⁻⁸ C and 5 X 10⁻⁸ C are 200 cm apart.

How much force repels these like-charges?

Careful 200 cm = 2 m

 $F = 9 \ X \ 10^9 \ Nm^2/C^2 \ (5 \ X \ 10^{-8} \ C) \ (3 \ X \ 10^{-8} \ C) \ / \ 2^2m^2 \ = \ 3.4 \ X \ 10^{-6} \ N$

2. Two spheres are attracted to each other while separated by a distance of 0.020 m. If we want the force of attraction to increase by a factor of 5, what distance in metres should separate the spheres?

Express the two forces as a ratio; k and charges cancel: $5/1 = (1/x^2) / (1/0.020 \ ^2)$ Cross multiply: $1/x^2 = 5/0.020 \ ^2$ Cross multiply again: $5x^2 = .0004$ x = 0.0089 m apart

3. Draw a circuit in which two 10 Ω resistors create an equivalent resistance of 5 Ω .

(2 marks)

Connect them in parallel $(10^{-1}+10^{-1})^{-1} = 5 \Omega$

4. Draw three light bulbs in a series circuit. Show that if one bulb is off, the rest will not receive current.

5. The circuit in the diagram at the right consists of 4 resistors whose values are 2 Ω , 4 Ω , 5 Ω and 7 Ω respectively.

What is the reading of the ammeter if the cell's voltage is 9V?

6. The following electric circuit consists of two resistors *R*₁ and *R*₂ and a power source. Using an ammeter, you measured the current intensity (*I*) through each resistor. Here are the results :

- a) Given this information, what is the current provided by the power source *I*_s? (Find the total current)
- b) Are the resistors identical? How do you know?Show all your work.

 $I_T = 0.75 + 0.75 = 1.5 \text{ A}$ They each draw the same current and since they are in parallel, their voltages are also the same.

Resistor	Intensity (A)
R_1	0.75
R_2	0.75

7. Design a circuit so that its total resistance is exactly 8 Ω . You are given the following resistors and you have to use all four of them: (3 marks)

Place the three 12 Ω in parallel with each other. Then place that in series with the 4 Ω

In parallel, Req = $[6^{-1}+6^{-1}+6^{-1}] = 2 \Omega$

But it is in series with the rest, so the total resistance =2 Ω + 6 Ω = 14 Ω

The total current is 1A + 1A + 1A = 3A

Vt = IR = 3(14) = 42 V

If the voltage of the power source is 150 V, what is the potential difference across R_3 ? (3 marks)

R parallel = $[100^{-1} + (75+25)^{-1}]^{-1} = 50 \Omega$ R total = 50 Ω + 50 Ω + 50 Ω = 150 Ω

 $I_T = V / R = 150 / 150 = 1 A$

But only half the current flows through R_3 because in parallel and with equal resistances(75 + 25 = 100) the current will divide equally.

 $I_3 = 1 A / 2 = 0.5 A$

 $V_3 = I_3 R_3 = 0.5 (25) = 12.5 V$

10. If all four resistors are identical, what is the ammeter reading across R_{3} ? Total current = 10.0 A

(3 marks)

 R_2 will receive x amps R_1 will receive the rest: 10 - x amps Since R_3 and R_4 are parallel and identical they experience $0.5\ R_1$ of resistance

The voltage of R_1 is parallel and equal to the combined voltage of R_2 , R_3 and R_4 , so:

$$\begin{split} I_1 R_1 &= I_2 R_2 + I_2 R_p \ \text{ and recall that } R_1 = R_2 \ \text{ and that } R_p = 0.5 \ R_1 \\ (10 \cdot x) R_1 &= x \ R_1 + x (0.5 \ R_1) \\ \text{Cancel } R_1 \\ 10 - x &= x + 0.5 \ x \\ 10 &= x + x + 0.5 \ x \\ 10 &= 2.5 \ x \\ x &= 10 \ / \ 2.5 &= 4 \ A = I_2 \\ \text{so } R_3 \ \text{will receive } 4A \ / \ 2 &= 2A \end{split}$$

FLASHBACK

11. a) Use a dot structure to show what happens when chlorine reacts with nitrogen. Give a formula for the resulting compound.

N makes 3 bonds (it has 5 valence electrons but its valence shell has room for 8)

Cl makes 1 bond (it has 7 valence electrons but its valence shell has room for 8)

```
Cl---N---Cl
Cl
NCl<sub>3</sub>
```

Extra

b) Use the following molecular formulas and structures as a guideline to place the atoms in their proper spots in the structural formulas (A structural formula is like a Lewis dot structure, but only the bonds are shown).

EXAMPLE	ANSWER
C ₆ H ₆	You know that each carbon makes 4 bonds and that there are six corners for six carbons. Hydrogens can only make 1
	bond each H

- 12. Find the <u>number of moles f</u>or each of these ions or molecules involved in the nitrogen cycle.
 - a) $30 \text{ g of } \text{NO}_3^-$

30 g (mole/62 g) = 0.48 moles

- b) $6.02 \text{ X} 10^{22} \text{ ions of NO}_2^- = 0.10 \text{ moles}$
- c) The amount of N_2 that will react with 30 g of H_2 according to:

 $N_2 + 3 H_2 \rightarrow 2 NH_3$

 $30 \text{ g H}_2(\text{mole}/2 \text{ g})=15 \text{ moles H}_2$

15 moles $H_2 (1N_2 / 3 H_2) = 5$ moles N_2