STE Pretest 3.1v2015

1. The force, F, between two objects with charge q_1 and q_2 , is given by:

 $F = \frac{k q_1 q_2}{r^2}$, where r = distance between the two charges in

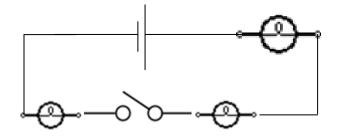
meters

 $k = Coulomb's constant = 9 X 10^9 Nm^2/C^2$.

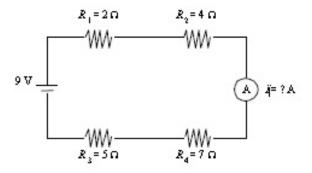
Charges of 3 X 10^{-8} C and 5 X 10^{-8} C are 200 cm apart.

How much force repels these like-charges?

2. Two spheres are attracted to each other while separated by a distance of 0.020 m. If we want the force of attraction to increase by a factor of 5, what distance in metres should separate the spheres?


3. Draw a circuit in which two 10 Ω resistors create an equivalent resistance of 5 Ω .

4. Draw three light bulbs in a series circuit. Show that if one bulb is off, the rest will not receive current.


Symbol for switch in off

Symbol for light bulb:

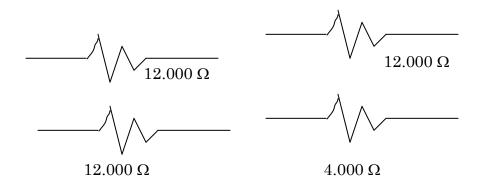
5. The circuit in the diagram at the right consists of 4 resistors whose values are 2 Ω , 4 Ω , 5 Ω and 7 Ω respectively. What is the reading of the ammeter if the cell's voltage is 9V?

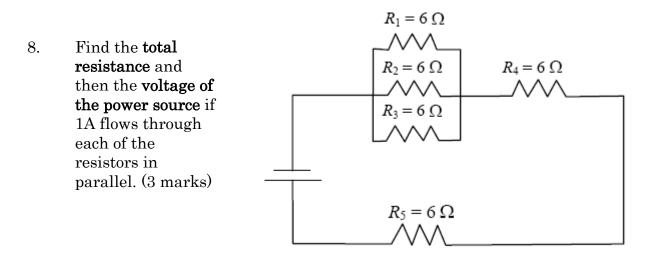
6. The following electric circuit consists of two resistors R_1 and R_2 and a power source. Using an ammeter, you measured the current

intensity (*I*) through each resistor. Here are the results :

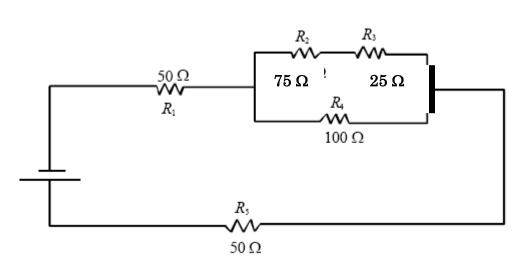
- a) Given this information, what is the current provided by the power source *I*_s? (Find the total current)
- b) Are the resistors identical? How do you know?Show all your work.
- Resistor
 Intensity (A)

 R1
 0.75

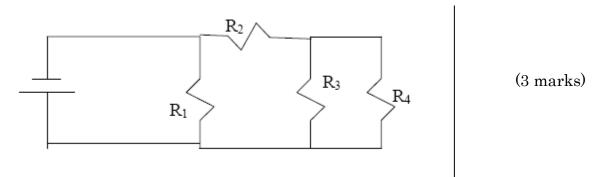

 R2
 0.75


R₁

7. Design a circuit so that its total resistance is exactly 8 Ω . You are given the following resistors and


 \mathbb{R}_2

you have to use all four of them



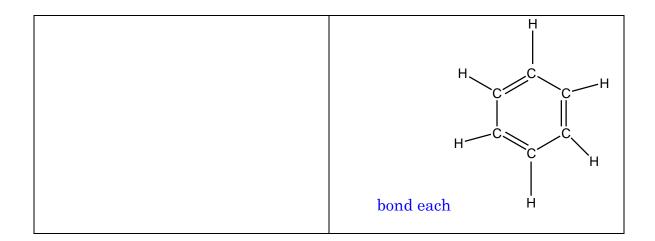
9.

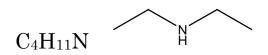
If the voltage of the power source is 150 V, what is the potential difference across R_3 ?

10. If all four resistors are identical, what is the ammeter reading across R_{3} ? Total current = 10.0 A

FLASHBACK

11. a) Use a dot structure to show what happens when chlorine reacts with nitrogen. Give a formula for the resulting compound.


N makes 3 bonds (it has 5 valence electrons but its valence shell has room for 8)


Cl makes 1 bond (it has 7 valence electrons but its valence shell has room for 8) $\,$

Extra

b) Use the following molecular formulas and structures as a guideline to place the atoms in their proper spots in the structural formulas (A structural formula is like a Lewis dot structure, but only the bonds are shown).

EXAMPLE	ANSWER
$C_{6}H_{6}$	You know that each carbon makes 4 bonds and that there are six corners for six carbons. Hydrogens can only make 1

- 12. Find the <u>number of moles f</u>or each of these ions or molecules involved in the nitrogen cycle.
 - a) $30 \text{ g of } \text{NO}_3^-$
 - b) $6.02 \text{ X } 10^{22} \text{ ions of NO}_2^-$
 - c) The amount of N_2 that will completely react with 30 g of H_2 according to:

 $N_2 + 3 H_2 \rightarrow 2 NH_3$