STE Pretest 3.1v2015

1. The force, F, between two objects with charge q_{1} and q_{2}, is given by:
$\mathrm{F}=\frac{\mathrm{kq}_{1} \mathrm{q}_{2}}{r^{2}}$, where $\mathrm{r}=$ distance between the two charges in
meters

$$
\mathrm{k}=\text { Coulomb's constant }=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} .
$$

Charges of $3 \times 10^{-8} \mathrm{C}$ and $5 \times 10^{-8} \mathrm{C}$ are 200 cm apart.
How much force repels these like-charges?
2. Two spheres are attracted to each other while separated by a distance of 0.020 m . If we want the force of attraction to increase by a factor of 5 , what distance in metres should separate the spheres?
3. Draw a circuit in which two 10Ω resistors create an equivalent resistance of 5Ω.
4. Draw three light bulbs in a series circuit. Show that if one bulb is off, the rest will not receive current.

Symbol for switch in off

Symbol for light bulb:

5. The circuit in the diagram at the right consists of 4 resistors whose values are $2 \Omega, 4 \Omega$, 5Ω and 7Ω respectively.
What is the reading of the ammeter if the cell's voltage is 9 V ?

6. The following electric circuit consists of two resistors R_{1} and R_{2} and a power source. Using an ammeter, you measured the current intensity (I) through each resistor. Here are the results :
a) Given this information, what is the current provided by the power source I_{s} ? (Find the total current)

b) Are the resistors identical? How do you know?Show all your work.
7. Design a circuit so that its total resistance is exactly 8Ω. You are

Resistor	Intensity (A)
R_{1}	0.75
R_{2}	0.75

you have to use all four of them

12.000Ω

4.000Ω
8. Find the total
resistance and then the voltage of the power source if 1A flows through each of the resistors in parallel. (3 marks)

9.

If the voltage of the power source is 150 V , what is the potential difference across R_{3} ?
10. If all four resistors are identical, what is the ammeter reading across R_{3} ? Total current $=10.0 \mathrm{~A}$

(3 marks)

FLASHBACK

11. a) Use a dot structure to show what happens when chlorine reacts with nitrogen. Give a formula for the resulting compound.

N makes 3 bonds (it has 5 valence electrons but its valence shell has room for 8)
Cl makes 1 bond (it has 7 valence electrons but its valence shell has room for 8)

Extra
b) Use the following molecular formulas and structures as a guideline to place the atoms in their proper spots in the structural formulas (A structural formula is like a Lewis dot structure, but only the bonds are shown).

EXAMPLE	ANSWER
You know that each carbon 4 bonds and that there are six corners for six carbons. Hydrogens can only make 1	

bond each

12. Find the number of moles for each of these ions or molecules involved in the nitrogen cycle.
a) $\quad 30 \mathrm{~g}$ of NO_{3} -
b) $\quad 6.02 \mathrm{X} 10^{22}$ ions of NO_{2}^{-}
c) The amount of N_{2} that will completely react with 30 g of H_{2} according to:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

