STE: Exo and Endothermic Reactions (on website, scroll down for answers)

1. A student dissolved 1 g of each of four substances in water in a laboratory experiment. The following table illustrates the change in temperature after the solids dissolved.

SUBSTANCES	$T_{ m initial}$	$T_{ m final}$
NH4Cl	23°C	19°C
NaOH	23°C	60°C
NaCl	23°C	23°C
Drano	23°C	60°C

Which of the above represent exothermic reactions?

2. Endothermic? Or Exothermic?

a)
$$H_2 O_{(g)} \rightarrow H_2 O_{(1)} + e \text{ nergy}$$

b) $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O + 241.8 \text{ kJ}$
c) $H_2 SO_{4(1)} + h \text{ eat} \rightarrow H_{2(g)} + \frac{1}{8} S_{8(s)} + 2 O_{2(g)}$
d) $N_{2(g)} + O_{2(g)} + 180.8 \text{ kJ} \rightarrow 2 \text{ NO}_{(g)}$
e) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} + 394 \text{ kJ}$

3. Which of the following are *endothermic* changes?

- a) Melting ice
- b) A burning candle
- c) Dew forming on a lawn
- d) Moth balls undergoing sublimation
- e) Iron rusting
- f) Water decomposing by electrolysis

4. Given: $N_{2(g)} + O_{2(g)} + 180.8 \text{ kJ} \rightarrow 2 \text{ NO}_{(g)}$

How much energy would be absorbed if only 7.00 grams of nitrogen was oxidized?

5. Give two examples of an oxidation reaction that does not involve oxygen.

Answers:

1.	NH ₄ Cl	endo (temperature decreased)
	NaOH	exo
	NaCl	neither (in reality, it's just slightly endothermic)
	Drano	mucho exo

- 2. (a) exo (b) exo (c) endo (d) endo (e) exo
- 3. A, d and f
- 4. 7.00 g of N_2 (mole/28.0 g) = 0.25 moles

 $180.8 \text{ kJ}/(1 \text{ mole of } N_2) * 0.25 \text{ moles} = 90.4 \text{ kJ}$ would be absorbed

5. $Cl_2 + 2 Na \rightarrow 2 NaCl$ each chlorine is taking an electron from sodium Br₂ + Ca \rightarrow CaBr₂ bromine is taking electrons from calcium