$$
\text { Formulae: } \quad \mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg} ; \quad \mathrm{F}=\mathrm{mg} ; \quad \mathrm{W}=\Delta \mathrm{E} ; \quad \mathrm{W}=\mathrm{F}^{*} \mathrm{~d} \quad \mathrm{E}_{\mathrm{p}}=\mathrm{mgh}
$$

1. In the following table, g_{p} / g_{e}, the ratio of a planet's gravitational acceleration to that of the earth, has been calculated for 3 planets and the earth's moon.

planet	relative mass(earth =1)	relative size	$\mathbf{g}_{\mathbf{p}} / \mathbf{g}_{\mathbf{e}}$
Mercury	0.0553	0.383	0.377
Venus	0.815	0.95	0.903
Earth	1	1	1
Earth's moon	0.0123	0.27	0.169

a) If a 30 kg piece of metal has that mass on earth, what will its mass be on the moon?
b) Why?
c) If the weight of an object is 400 N on Mercury, what will its weight be on the moon?
2. a) Find the net force acting on a box if it's being pulled on by a boy with a 39 N force and in the opposite direction by a girl exerting 45 N . Draw a diagram.
b) How much work is being done by the boy and girl if the girl ends up dragging the boy for 2.0 m ?
3. A 20 kg wagon is pulled at an angle of 40° with a 30 N force.
a) Show mathematically that there is not enough force to lift the wagon.
b) Find the acceleration of the wagon.
4. a) How much work is done to push a 22 kg mass up a 30° inclined plane for a slanted distance of 3.0 m ?

b) Use the change in potential energy to arrive at the same answer.
5. a) Calculate the gravitational potential energy of a 30.0 kg mass placed 100.0 m above the surface of Mars where $\mathrm{g}=3.7 \mathrm{~N} / \mathrm{kg}$.
b) Find the velocity of the object if it was dropped from that height.
c) Find the velocity of the object if it was dropped from that height on Earth.

