Exam Review 4

| Formulae: | $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg} ; \quad \mathrm{F}=\mathrm{mg} ; \quad \mathrm{W}=\Delta \mathrm{E} ; \quad \mathrm{W}=\mathrm{F}^{*} \mathrm{~d}$ | $\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$ |
| :--- | :--- | :--- | :--- | :--- |

1. In the following table, g_{p} / g_{e}, the ratio of a planet's gravitational acceleration to that of the earth, has been calculated for 3 planets and the earth's moon.

planet	relative mass(earth =1)	relative size	$\mathbf{g}_{\mathbf{p}} / \mathbf{g}_{\mathbf{e}}$
Mercury	0.0553	0.383	0.377
Venus	0.815	0.95	0.903
Earth	1	1	1
Earth's moon	0.0123	0.27	0.169

a) If a 30 kg piece of metal has that mass on earth, what will its mass be on the moon?
30 kg;
b) Why?
mass remains constant in different gravitational fields. The number of atoms don't change.
c) If the weight of an object is 400 N on Mercury, what will its weight be on the moon?
$g_{\text {moon }} / g_{e}=0.169$
$\mathrm{g}_{\text {mercury }} / \mathrm{g}_{\mathrm{e}}=0.377$
$g_{\text {moon }} / g_{\text {mercury }}=0.169 / 0.377=0.448$, so things will weigh that many times less on the moon or $0.448(400)$ $=.448 * 400=179.2 \mathrm{~N}$. Don't like this method, try the green one:
or $g_{\text {mercury }} / g_{e}=0.377$
$g_{\text {mercury }}=0.377 * g_{e}=0.377 * 9.8 \mathrm{~N} / \mathrm{kg}=3.6946 \mathrm{~N} / \mathrm{kg}$

$$
\begin{aligned}
& \mathrm{F}=\mathrm{mg}_{\text {mercury }} \\
& 400 \mathrm{~N}=\mathrm{m}(3.6946 \mathrm{~N} / \mathrm{kg}) \\
& \mathrm{m}=400 \mathrm{~N} / 3.6946 \mathrm{~N} / \mathrm{kg}=108.266 \ldots \mathrm{~kg} \\
& \mathrm{~F}=\mathrm{mg}_{\text {moon }} \\
& =108.266 \ldots \mathrm{~kg}(9.8)(0.169) \\
& =179 \mathrm{~N}
\end{aligned}
$$

2. a) Find the net force acting on a box if it's being pulled on by a boy with a 39 N force and in the opposite direction by a girl exerting 45 N . Draw a diagram.
$45 \mathrm{~N}-39 \mathrm{~N}=6 \mathrm{~N}$ in the girl's direction
b) How much work is being done by the boy and girl if the girl ends up dragging the boy for 2.0 m ?
$\mathrm{W}=\mathrm{F}^{*} \mathrm{~d}=6 \mathrm{~N}(2 \mathrm{~m})=12 \mathrm{Nm}=12 \mathrm{~J}$
3. A 20 kg wagon is pulled at an angle of 40° with a 30 N force.
a) Show mathematically that there is not enough force to lift the wagon.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{u}} / 30 \mathrm{~N}=\sin 40 \\
& \mathrm{~F}_{\mathrm{u}}=30 \mathrm{~N} \sin 40=30 \mathrm{~N} *(0.64278760968653932632264340990726)=19.3 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{g}}=\mathrm{mg}=20 \mathrm{~kg} * 9.8 \mathrm{~N} / \mathrm{kg}=196 \mathrm{~N}
\end{aligned}
$$

$196 \mathrm{~N}>19.3 \mathrm{~N}$, so the wagon is not lifted.
b) Find the acceleration of the wagon.
(3 marks)

$$
\begin{aligned}
& \mathrm{F}_{\text {effective }} / 30 \mathrm{~N}=\cos 40 \\
& \mathrm{~F}_{\text {effective }}=30 \mathrm{~N}^{*} \cos 40=22.98 \mathrm{~N} \\
& \mathrm{~F}_{\text {effective }}=\mathrm{ma} \\
& 22.98 \mathrm{~N}=20 \mathrm{~kg} * \mathrm{a} \\
& \mathrm{a}=22.98 \mathrm{~N} / 20 \mathrm{~kg}=1.1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

4. a) How much work is done to push a 22 kg mass up a 30° inclined plane for a slanted distance of 3.0 m ?

$\mathrm{F}_{\text {effective }}=\mathrm{mgsin} \theta=22 \mathrm{~kg}(9.8 \mathrm{~N} / \mathrm{kg}) \sin 30=107.8 \mathrm{~N}$ $\mathrm{W}=\mathrm{F}^{*} \mathrm{~d}=107.8 \mathrm{~N}^{*} 3 \mathrm{~m}=323.4 \mathrm{~J}$
c) Use the change in potential energy to arrive at the same answer.

Originally the potential energy is zero, so at 3.0 m , the potential energy is $\mathrm{mgh}=$
$22 \mathrm{~kg}^{*} 9.8 * 3 \sin 30=323.4 \mathrm{~J}$
5. a) Calculate the gravitational potential energy of a 30.0 kg mass placed 100.0 m above the surface of Mars where $\mathrm{g}=3.7 \mathrm{~N} / \mathrm{kg}$.

$$
\mathrm{mgh}=30.0 \mathrm{~kg}(3.7 \mathrm{~N} / \mathrm{kg})(100.0 \mathrm{~m})=11100 \mathrm{~J}
$$

b) Find the final velocity of the object (when it hits the ground) if it was dropped from that height.
$E p_{1}+E k_{1}=E p_{2}+E k_{2} ;$ No potential energy at ground level
$11100 \mathrm{~J}+0=0+\mathrm{Ek}_{2}$
$\mathrm{Ek}_{2}=0.5 \mathrm{mv}^{2}=11100 \mathrm{~J}$
$\mathrm{V}=27.2 \mathrm{~m} / \mathrm{s}$
d) Find the final velocity of the object if it was dropped from that height on Earth.

Notice that in the above the $2^{\text {nd }}$ last step is:
$0.5 \mathrm{mv}^{2}=\mathrm{mgh}$
$0.5 \mathrm{v}^{2}=\mathrm{gh}$
$0.5 \mathrm{v}^{2}=9.8(100)$
$\mathrm{V}=44.3 \mathrm{~m} / \mathrm{s}$

