Solutions to p 100

1. $F=\frac{\left(9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right)\left(50 \times 10^{-6} \mathrm{C}\right)\left(70 \times 10^{-6} \mathrm{C}\right)}{(0.3 \mathrm{~m})^{2}}=350 \mathrm{~N}$
2. It will become $1 / 9$ th as strong.
3. It will become 9 times stronger.
4. $\frac{F_{\text {new }}}{F_{\text {original }}}=\frac{k 0.5 q_{1} q_{2} /(2 r)^{2}}{k q_{1} q_{2} / r^{2}}=\frac{0.5}{4}=0.125$

It will only be 0.125 or $1 / 8$ times as strong.
5. $\frac{F_{\text {new }}}{F_{\text {original }}}=\frac{1}{1}=\frac{k 16 q_{1} q_{2} /(x r)^{2}}{k q_{1} q_{2} / r^{2}}=\frac{\frac{16}{x^{2}}}{1}$

$$
\begin{aligned}
& 1 / 1=16 / x^{2} \\
& x^{2}=16 \\
& x=4, \text { so we have to separate the charges so that we now have } 4 \text { times }
\end{aligned}
$$

the original distance.
6. $x=r=$ separation distance between the charges
$y=$ force of attraction or repulsion between the charges

