3. a) 1 and 3

b) 2

c) 1 and 2 because reaction 2 has a lower activation energy of 25 kJ, which is needed for the reaction to run backwards

d) reaction 2 is the fastest; it has the lowest activation energy.

e)

reaction	ΔH	Ae
1	75 kJ	100 kJ
2	-75 kJ	25 kJ
3	25 kJ	100 kJ
4	-25 kJ	75 kJ

P196

14. The heat –producing reaction used to warm up the soup involves NaOH dissolving in water. Consult the appendix on page 420 in the textbook to get the Δ H of -42 kJ/molefor NaOH_(s) \rightarrow NaOH_(aq)

Environment (soup):

Q = mc∆T =300 g(0.90*4.19 J/g°C)(60-40) °C =22626 J

Reaction: △H = -22626 J =-22. 626 kJ -22. 626 kJ(mole of NaOH/-42 kJ J) = 0.5387142857 moles NaOH 0.5387142857 moles NaOH (40g/mole) = 22 g

p183