#### <u>Chem 534</u> Avogadro's Law: Simulation

**<u>Purpose</u>**: to examine whether density in g/L and molar concentration of a gas in moles/L vary at a fixed pressure and temperature.

# Procedure:

- 1. Go to http://www.chm.davidson.edu/ChemistryApplets/GasLaws/AvogadrosLaw.html
- 2. Scroll down to the bottom of the page until you see the following:



- 3. Choose a gas.
- 4. Press "tare" and begin to add gas until you get to a standard pressure of 580 mm. This is how you do it:

Your manometer should look like the diagram on your right. The pressure reading is obtained by *subtracting the right column from the left column:* 

For example: 723 mm - 143 mm = 580 mm. If your difference is higher than 580, remove gas. Otherwise, if the difference is lower than 580, you need to add gas.

- 5. Record the mass next to the right gas in the data table.
- 6. Repeat steps 3 to 5 for the remaining gases.

### Data:

| Gas                       | Mass Needed to Create 580 mm Pressure |
|---------------------------|---------------------------------------|
| Helium, He                |                                       |
| Nitrogen, N <sub>2</sub>  |                                       |
| Oxygen, O <sub>2</sub>    |                                       |
| Neon, Ne                  |                                       |
| Chlorine, Cl <sub>2</sub> |                                       |
| Argon                     |                                       |



# Analysis:

1. Recopy the data into the first column and fill out the last two columns by carrying out the appropriate calculations..

| Gas                          | Mass Needed to<br>Create 580 mm<br>Pressure | g/L (remember the<br>volume of the flask was<br>500 mL) | moles/L |
|------------------------------|---------------------------------------------|---------------------------------------------------------|---------|
| Helium, He                   |                                             |                                                         |         |
| Nitrogen,<br>N <sub>2</sub>  |                                             |                                                         |         |
| Oxygen, O <sub>2</sub>       |                                             |                                                         |         |
| Neon, Ne                     |                                             |                                                         |         |
| Chlorine,<br>Cl <sub>2</sub> |                                             |                                                         |         |
| Argon, Ar                    |                                             |                                                         |         |

- 2. a. What do you notice about the values in the last column?
  - b. Why is this not surprising?

# **Conclusion**: