- 11. Determine whether the following statements are true or false.
 - ____F_ a) Each hydrogen in NaH and HCl has an oxidation number of +1.

In metal hydrides, H=-1.

____T__ b) To calculate the oxidation numbers of the atoms in a polyatomic ion, the charge of

the ion must be used.

______ c) The oxygen in H_2O has an oxidation number of -2.

____F__ d) The oxidation number for nitrogen in a molecule is always +5.

N can be: 0, 2,+3,-3, 4, 5 (don't memorize this)

$$T_e$$
 A + e \rightarrow A⁻¹ is a reduction

- 12. Determine the oxidation number for each atom in the following molecules and find the total contribution by the atom.
 - a) AlCl₃

	O.N.	Total contribution
Al	3	3
Cl	-1	-3

b) OCl⁻¹

	O.N.	Total contribution
О	-2	-2
Cl	1	1

c) Mg^{+2}

	O.N.	Total contribution
Mg	2	2

d) KClO₃

	O.N.	Total contribution
K	1	1
Cl	5	5
О	-2	-6

13. Given the unbalanced equation:

$$FeCl_3 + SnCl_2 \rightarrow SnCl_4 + FeCl_2$$

a. Identify what is being oxidized and what is being reduced.

$$Fe^{+3} \rightarrow Fe^{+2}$$
: reduction

$$Sn^{+2} \rightarrow Sn^{+4}$$
: oxidation

b. Write the two half-reactions

$$Fe^{+3} + 1e \rightarrow Fe^{+2}$$

$$Sn^{+2} \rightarrow Sn^{+4} + 2e$$