
STE: In Class-Activity

- 1. To prepare a fertilizer for plants, you dissolve 1.00 g of K_3PO_4 in 3.00 L of water.
- a) What will the plants synthesize with the help of PO₄³⁻ ion after their roots absorb it? List four different organic compounds. Use the hint given below each structure.

b) Calculate the concentration of K₃PO₄ in g/L.

1.00 g/ 3.00 L = 0.33 g/L

Mar 26

STE: In Class-Activity

Calculate the concentration of K^{\dagger} only in g/L. You'll need an equation first showing what happens when K_3PO_4 dissolves in water.

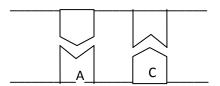
```
K_3PO_4 \rightarrow 3 K^+ + PO_4^{3-}

1.00 g K_3PO_4 / (212g/mole) = 0.00472 moles of K_3PO_4

0.00472 moles of K_3PO_4 (3 K^+/1 K_3PO_4) = 0.0145 moles K^+

0.0145 moles K^+ (39 g/mole) = 0.552 g

0.552 g/3 L = 0.18 g/L
```


d) Calculate the concentration of PO₄³⁻ only in g/L, ppm and moles/L.

```
K_3PO_4 \rightarrow 3 K^+ + PO_4^{3-}
0.00472 \text{ moles of } K_3PO_4 = 0.00472 \text{ moles of } PO_4^{3-} \text{ (see 1: 1 ratio in equation)}
0.00472 \text{ moles of } PO_4^{3-} \text{ (97 g /mole)} = 0.458 \text{ g}
0.458 \text{ g/3.00 L} = 0.153 \text{ g/L} \text{ (or you could have subtracted the answers from (a) and (b). Check! It works.}
= 153 \text{ mg/L} = 153 \text{ ppm}
Using moles from above: 0.00472 \text{ moles of } PO_4^{3-} \text{ / 3.00 L} = 0.00157 \text{ mole/L}
```

2. TRUE or FALSE?

- a) Humans usually have 46 chromosomes____T____
- b) The nitrogenous bases(adenine, thymine, etc) are the "steps" in the DNA ladder.____T____
- c) There's 1 gene in each chromosome_____F, there are lots more.____
- Chromatin looks like a messy strand. Then at a certain point it contracts to form chromosomes.
 When does that happen?
 Just prior to cell division.

4.

- a) In the above DNA, place the missing nitrogenous bases. T, G
- b) If the above represented transcription, what messenger RNA bases would match up DNA's adenine and cytosine shown?

U and G

- 5. Where does messenger RNA attach itself after leaving the nucleus? ribosomes
- 6. What attaches itself to mRNA?

Transfer RNA

7. What does each transfer RNA bring to the mRNA?

A specific amino acid

8. Here is a sequence of t-RNA codes:

AUG GAU CGU UCC GAA UAA ACU

- a) What amino acid sequence will the synthesized protein have after translation? Show work. Consult table of messenger RNA codes.
- 1st, here are the mesenger RNA codes UAC--CUA-GCA-AGG-CUU-AUU- UGA

Mar 26

STE: In Class-Activity

Second letter							
		U	С	Α	G		
First letter	υ	UUU Phe UUC Leu UUA Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGA Stop UGG Trp	UCAG	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG	CGU CGC CGA CGG	UCAG	
	A	AUU AUC AUA IIIe AUA Met	ACU ACC ACA ACG	AAU Asn AAA Lys AAG	AGU Ser AGC AGA Arg	UCAG	Third letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu	GGU GGC GGA GGG	UCAG	

Using the chart above

messengerr RNA codes UAC--CUA-GCA-AGG-CUU-AUU- UGA correspond to the amino acid sequence of

tyr- leu-ala-arg-leu-lle-STOP

b) What was the original DNA sequence used for the transcription of this code?

ATG GATCGTTCCGAATAA ACT

- 9. a) A black sheep has the genotype Bb. The B= black gene is dominant. What percentage of its sex cells will receive the "B" gene?

 50%
 - b) If a heterozygous sheep mates with a white one, what percent of the offspring will be black? Show work.

Mar. 26

STE: In Class-Activity

	В	b
b	Bb	bb
b	Bb	bb

50% will be Bb and therefore black.

10. If the genes for size(L) and color(G) are in separate chromosome pairs, what are the possible genotypes for the sex cells (gametes) of a plant with the genotype GgLl?

FOIL: GL, Gl, gL and gl