Solutions to Government Exam Questions

1. $\mathrm{R}_{\mathrm{T}}=\left[\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1}+\mathrm{R}_{3}^{-1}\right]^{-1}=\left[100^{-1}+100^{-1}+100^{-1}\right]^{-1}=33.3 \Omega$.
2. $\quad A_{c}$ because it is the total current.
3. $V_{T}=I R_{T}$
$9=I(2+4+5+7)$
$\mathrm{I}=0.5 \mathrm{~A}$
4. Circuit M
$\mathrm{V}_{\mathrm{T}}=\mathrm{IR}_{\mathrm{T}}$

$$
12=\mathrm{I}(3+9+12)
$$

$\mathrm{I}=0.5 \mathrm{~A}$
Circuit N needs 10 times the current, so we need $10(0.5 \mathrm{~A})=5 \mathrm{~A}$
Resistance? V = IR

$$
\begin{aligned}
& 12=5 \mathrm{R} \\
& \mathrm{R}=2.4 \Omega
\end{aligned}
$$

Which two resistors will give 2.4Ω ?
Try them into the formula: $\quad \mathrm{R}_{\mathrm{T}}=\left[\mathrm{R}_{1}^{-1}+\mathrm{R}_{2}^{-1}\right]^{-1}=\left[3^{-1}+12^{-1}\right]^{-1}=2.4 \Omega$.
Answer 3Ω And 12Ω.
5. Voltage is constant! Answer 12 V
6. C
7. $\mathrm{V}_{\mathrm{T}}=\mathrm{I} \mathrm{R}_{\mathrm{T}}=0.25(10+20+40)=17.5 \mathrm{~V}$.
8. $\mathrm{I}_{\mathrm{T}}=0.75+0.75=1.5 \mathrm{~A}$
9. If the resistance at the second bulb is twice as big, then it will draw only half the current. $0.5(0.6)=0.3 \mathrm{~A}$.

Attach an ammeter to L_{2} to check if this is the case.

