REVIEW 8

- 1. Fill in the blanks
- a) Gases consist of large numbers of particles that are in continuous, random____
- b) The combined volume of all the particles of a gas is negligible compared to the total volume of the particles'_____
- c) Attractive (or repulsive) forces between ideal gas molecules are _____
- d) Ideal gas behavior is far more likely at high _____and low _____
- e) The middle of the kinetic energy distribution curve is the _____kinetic energy of molecules.
- 2. What is the partial pressure of oxygen in the air at STP? Air is 21% oxygen.
- 3. What allows us to conclude that the volume ratio of two different gases is equal to their mole ratio?
- 4. Prove that the density of an ideal gas equals $P\mathcal{M}/RT$, where \mathcal{M} = molar mass
- 5.

One reaction involved in the conversion of iron ore to the metal is

 $FeO(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$

Calculate the standard enthalpy change for this reaction from these reactions of iron oxides with CO:

(1)	$3 \operatorname{Fe}_2 O_3(s)$	+ CO(g) -	$\rightarrow 2 \operatorname{Fe}_3 O_4(s) + \operatorname{CO}_2(g)$	$\Delta H^{\circ} = -47.0 kJ$
(2)	$Fe_2O_3(s)$ +	$3 \text{CO}(g) \rightarrow$	$\rightarrow 2 \operatorname{Fe}(s) + 3 \operatorname{CO}_2(g)$	$\Delta H^\circ=-25.0kJ$
(3)	$Fe_{-}O_{+}(s) +$	- CO(g) \rightarrow	$3 \text{ FeO}(s) + CO_2(g)$	$\Delta H^{\circ} = 19.0 kJ$

 Two spherical apples are peeled. It takes 12.0 s for apple A to accumulate 1.0 g of brownish phenolic compounds.

From an identical apple B, we cut out a cylindrical hole that passes through the apple's center, and we throw out the cylinder.

How long will it take apple B to form 1.0 g of brownish phenolic compounds if R = 2r?

7. The bond energy of X-X is 30.0kJ/mole and that of Y-Y is 40.0 kJ/mole.

If $35 \text{ kJ} + \text{X}_2 + \text{Y}_2 \rightarrow 2 \text{ XY}$

what is the bond energy of XY on a per mole basis?

Some basic questions: