Chemistry 534

Exploration Problem

MAIN PROBLEM Given that the K_b of NH₃ is 1.8 x 10⁻⁵, calculate the K_a of the ammonium ion, NH₄⁺.

1) First write an equation showing that NH₃ is a Bronsted base in water. Complete the following:

$$NH_{3(aq)}$$
 + $H_2O_{(l)}$ = $NH_{4(aq)}^+$ + $OH_{(aq)}^-$

2) Now write a K_b expression for the above.

$$\mathbf{K}_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

3) Multiply both the numerator and denominator by [H⁺].

$$\mathbf{K_b} = \frac{[NH_4^+][OH^-][H^+]}{[NH_3][H^+]}$$

4) Substitute K_w into your answer for #3,. Remember what K_w equals.

Since
$$K_b = \frac{[NH_4^+][OH^-][H^+]}{[NH_3][H^+]}$$
 and $Kw = [OH^-][H^+]$

$$\mathbf{K}_{b} = \frac{[NH_{4}^{+}]K_{W}}{[NH_{3}][H^{+}]}$$

5) Write an equilibrium equation showing how NH₄⁺ acts as an acid.

$$NH_{4(aq)}^{+} = NH_{3(aq)} + H_{(aq)}^{+}$$

6) Write a K_A expression for your equation in #5.

$$\mathbf{K}_{\mathbf{A}} = \frac{[NH_3][H^+]}{[NH_4^+]}$$

- 7) Write an expression for $\frac{1}{K_A}$ $\frac{1}{K_A} = \frac{[NH_4^+]}{[NH_3][H^+]}$
- 8) Substitute your answer from #7 into your expression for #4

Since
$$K_b = \frac{[NH_4^+]K_w}{[NH_3][H^+]}$$
 and $\frac{1}{K_A} = \frac{[NH_4^+]}{[NH_3][H^+]}$
Then $K_b = \frac{K_w}{K_A}$ or $K_A = \frac{K_w}{K_B}$

9) Now solve the main problem at the top of the page (Get K_A for ammonium ion)

$$K_A = \frac{K_W}{K_B} = \frac{1.0X10^{-14}}{1.8X10^{-5}} = 5.6 \text{ X } 10^{-10}$$

<u>SPINOFF PROBLEM</u> Calculate the percent of NH_4^+ molecules ionized (also known as percent dissociation) in a 0.10 M solution. (Use your K_A from step 9)

$$K_A = \frac{[NH_3][H^+]}{[NH_4^+]} = \frac{[x][x]}{[0.10-x]} = 5.6 \text{ X } 10^{-10}$$

Cross multiply; use quadratic to solve for x.

$$x = 7.5 \times 10^{-6}$$

The % that splits up = $7.5 \times 10^{-6}/0.10 \times 100 = 0.0070 \%$ (very small!)