Answers to 430 Extra Practice

1. C
2. C
3. D
4. D
5. B
6. C
7. C (divide the \# of electrons by the the \# of electrons per coulonmb; this gives coulombs. Then divide coulombs by seconds.
8. C $\quad(3+3 x=0)$
9. D (notice the equation must first be balanced and the actual answer is 6250, not 6230)
10. C
11. $0.378 \%=0.00378$
$0.00378(50.0)=0.189 \mathrm{~g}$ of HNO_{3}
$0.189 \mathrm{~g}($ mole $/ 63 \mathrm{~g})=0.003$ moles of HNO_{3}
Original concentration $=0.003$ moles of $\mathrm{HNO}_{3} / 0.050 \mathrm{~L}=0.06 \mathrm{moles} / \mathrm{L}$
$\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$
$0.06 \mathrm{~V}_{1}=0.02(0.150)$
$\mathrm{V}_{1}=0.050 \mathrm{~L}$
12. Pipette 50 ml of the original solution
13. Transfer it to a 150 mL volumetric flask
14. Add water to white lone and mix.
15. $0.4889(64)+0.2781(66)+0.0411(67)+0.1857(68)+0.0062(70)=65.46 \mathrm{amu}$
16. The 4Ω resistor to the left of the 1Ω resistor will only draw $1 / 4(4)=1 \mathrm{~A}$ because it is 4 times bigger. (Remember $I_{1} R_{1}=I_{2} R_{2}$ for parallel circuits, since voltage is constant.) The voltage for the triangular parallel $=1(4)=4 \mathrm{~V}$

So the total current $=4 \mathrm{~A}+1 \mathrm{~A}=5 \mathrm{~A}$
The voltage for the mixed parallel branch $=16-\mathbf{4 V}=12 \mathrm{~V}$.
The bottom part of that branch receives $12 \mathrm{~V} / 4 \Omega=3 \mathrm{~A}$, so the top must receive $5 \mathrm{~A}-3 \mathrm{~A}=2 \mathrm{~A}$.

Since the voltages of the 2Ω and R_{2} resistors have to ad up to 12 V , then
$\mathrm{I}_{\text {top }} \mathrm{R}+\mathrm{I}_{\text {top }} \mathrm{R}_{2}=12 \mathrm{~V}$
$2(2)+2 R_{2}=12$
$\mathrm{R}_{2}=4 \Omega$
14. $\mathrm{VIt}=\mathrm{mc} \Delta \mathrm{T}$, but $\mathrm{VI}=\mathrm{P}$, so

$$
\begin{aligned}
& 3000 \mathrm{~J} / \mathrm{s}(15 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})=\mathrm{m}\left(4.19 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)(60-12)^{\circ} \mathrm{C}\right. \\
& \mathrm{m}=13425 \mathrm{~g} \\
& =13425 \mathrm{ml}=13.4 \mathrm{~L}
\end{aligned}
$$

15. $10^{23} / 6.02 \times 10^{23}=0.166$ moles of O_{2}
0.166 moles of $\mathrm{O}_{2}\left(3 \mathrm{CO}_{2} / 5 \mathrm{O}_{2}\right)(44 \mathrm{~g} / \mathrm{mole})=4.4 \mathrm{~g} \mathrm{CO}_{2}$
0.166 moles of $\mathrm{O}_{2}\left(4 \mathrm{H}_{2} \mathrm{O} / 5 \mathrm{O}_{2}\right)(18 \mathrm{~g} / \mathrm{mole})=1.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Total mass of gas produced $=5.5 \mathrm{~g}$

