How the force between two charges varies—based on Coulomb's Law:

$$
F=\frac{-k q_{1} q_{2}}{r^{2}}
$$

	q_{1}	q_{2}	r_{2}	$\frac{F_{2}}{F_{1}}$
a)	3.0 times bigger	same	same as r_{1}	3
b)	same	2.0 times bigger	same	2
c)	3.0 times bigger	2.0 times bigger	same	$3(2)=6$
d)	same	same	3.0 times bigger	$1 / 3^{2}=1 / 9$
e)	2.0 times bigger	same	3.0 times bigger	$\begin{gathered} 2\left(1 / 3^{2}\right) \\ =2 / 9 \end{gathered}$
f)	same	same	$\frac{1}{3} \text { of } r_{1}$	$\begin{gathered} (1 /(1 / 3))^{2}= \\ 9 \end{gathered}$
g)	2.0 times bigger	same	$\frac{1}{3} \text { of } r_{1}$	$\begin{gathered} 2^{*}(1 /(1 / 3))^{2} \\ =18 \end{gathered}$
h)	2.0 times bigger	same	same	2.0
i)	same	same	Flip the force ratio and square root it: $r_{2}=\sqrt{\frac{1}{2}} r_{1}=0.707 r_{1}$	2.0
j)	same	same	Flip the force ratio and square root it: $r_{2}=\sqrt{\frac{1}{25}} r_{1}=0.2 r_{1}$	25

