Here's what's even more important:

- If you make one of the charges x times bigger, because the q is in the numerator, the force will also become x times stronger.
- If you separate the charges by a distance that's x times bigger, because the r is in the denominator and because it's squared, the force will become $1 / x^{2}$ of the original. So it will get a lot weaker.

Example2 What happens to the force between two charges if their separation distance doubles?
Answer: It becomes only $1 / x^{2}$ of the original $=1 / 2^{2}=1 / 4=0.25$ times as big.

Example2 What happens to the force between two charges if one of the charges becomes 3 times as big?

Answer:
It becomes x times as big, so 3 times as big.

Example 3 What happens if both charges become twice as big and the separation distance is $1 / 3$ of the original?

Answer:

The effect of the charges on forces is a factor of 2*2 $=4$
The effect of the distance on forces is a factor of $1 / x^{2}=1 /(1 / 3)^{2}=9$.
Combine those: the force will be $4 * 9=36$ times bigger.

Example 4 What if the force doubled and only of the charges changed, becoming three times as big. What must have happened to the separation distance for this to hold true?

Answer:

Let $\mathrm{x}=$ factor for distance. Force doubled and charge tripled. Recall distance is related to force by a factor of $1 / x^{2}$.
$2=3^{*}\left(1 / x^{2}\right)$
$2 x^{2}=3$

$$
X=\sqrt{\frac{3}{2}}=1.22
$$

So the distance between the charges was separated by a factor of 1.22.

