Science and Technology LAB ST 3.3 Gears Activity

Name_____

- 1. Look for the pair of gears that has the smallest gear, and place a black mark (with a grease pencil or marker) on one of the large teeth of the larger gear.
- 2. Place a black mark (with a grease pencil or marker) on one of the large teeth of the smaller gear.
- 3. While turning the larger gear (if there's too much resistance, rotate it in the opposite direction), count how many turns the smaller gear makes for every <u>three turns</u> made by the largest gear. Record your result below.

Turns made by	
largest gear	
Turns made by	
smallest gear	

- 4. On the assembly with three gears, Place a black mark on one of the large teeth of the largest gear.
- 5. Place a black mark (with a grease pencil or marker) on one of the large teeth of the smallest gear.
- 6. While turning the largest gear, count how many turns the smallest gear makes for every <u>one</u> <u>turn</u> made by the largest gear. Record your result below.

Turns made by	
largest gear	
Turns made by	
smallest gear	

- 7. Place a black mark (with a grease pencil or marker) on one of the large teeth of the largest gear.
- 8. Place a black mark (with a grease pencil or marker) on one of the large teeth of the smaller gear.
- 9. While turning the largest gear, count how many turns the smallest gear makes for every <u>one</u> <u>turn</u> made by the largest gear. Record your result below.

Turns made by	
largest gear	
Turns made by	
smallest gear	

10. A) Was there a difference in the result in #6 with that of #9?_____

B) Was there a difference in the direction of the smallest wheel in #6 with that of the smaller wheel in #9?

Specify._____

11. Draw the three gear assemblies and complete the table.

Drawings (Use circles and spokes. Number of spokes does not have to match exactly)	# of turns of small gear/ # of turns of large	# of teeth of large/# of teeth of small (count them both!)	Gear ratio = velocity ratio	Mechanical advantage

Shaft A Shaft B Shaft C Gear #1 $F_{12} \\$ 12. Gear #2 and gear # 4 share an axle. Measure the diameter of each friction gear, and find the velocity or gear Gear #2 Gear #4 ratio for this gear box. Gear #1 is the input. Gear #3 F₃₄

13. Which of the 7 key ideas about gears (from the stencil) did this lab reinforce? Write out the relevant ones. Don't include number 12.