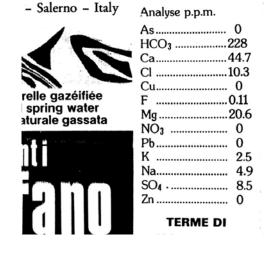
COMPETENCY 2 Making the Most of Scientific Knowledge

1. For some unknown reason, a few bottled water companies list the results of water analysis without including the ionic charges.

Using the charges of **polyatomic ions** and metal ions from the list shown, write the **empirical formulas** and **names** of any **four** compounds that can be created from these ions, if they were all present in sufficient quantities.

For example, if Li and OH had been listed,

We would first include the charges:


Li⁺ (charge is positive one) Polyatomic = OH⁻ (charge is negative one)

One of the four answers would have been:

• Empirical formula : LiOH

• Name: lithium hydroxide

Here are the charges for the polyatomic ions: HCO₃, NO₃, SO₄⁻²,

1. <u>SOLUTION</u>

The students will recognize the ions listed in the first two columns:

METAL IONS (those recognized by students from main groups studied)	POLYATOMICS	FORMULAE (any four of these are acceptable)	NAMES
Ca ²⁺	HCO ₃	Ca(HCO ₃) ₂	calcium hydrogen carbonate
		Ca(NO ₃) ₂	calcium nitrate
		CaSO ₄	calcium sulfate
Mg ²⁺	NO ₃	Mg(HCO ₃) ₂	magnesium hydrogen carbonate
		$Mg(NO_3)_2$	magnesium nitrate
		MgSO ₄	magnesium sulfate
K ⁺	SO ₄ ²⁻	KHCO ₃	potassium hydrogen carbonate
		KNO ₃	potassium nitrate
		K_2SO_4	potassium sulfate
Na ⁺		NaHCO ₃	sodium hydrogen carbonate
		NaNO ₃	sodium nitrate

- 2. Sodium benzoate is a preservative used in acidic foods such as jams and salad dressings.
 - Sodium benzoate's toxic dose is 500 mg/kg of body weight.
 - The greatest amount of sodium benzoate allowed in every 100 grams of jam is 0.10 g. This is the legal limit.

One day, something went wrong at a jam factory, and <u>two times</u> the legal limit of sodium benzoate was added.

In theory, how many 454 gram-jars of jam would a 50 kg child have to eat to experience the toxic dose?

2. <u>SOLUTION</u>:

$$\frac{500 \text{ mg of sodium benzoate}}{\text{kg of body weight}} = \frac{0.500 \text{ g of sodium benzoate}}{\text{kg of body weight}}$$

$$50 \text{ kg body weight} \left[\frac{0.500 \text{ g sodium benzoate}}{\text{kg body weight}} \right] = 25 \text{ g of sodium benzoate would be toxic.}$$

Two times the legal limit =
$$\frac{2*0.10g \text{ sodium benzoate}}{100 \text{ g of jam}} = \frac{0.2 \text{ g sodium benzoate}}{100 \text{ g of jam}}$$

25 g of sodium benzoate
$$\left[\frac{100g \text{ of jam}}{0.2 \text{ g sodium benzoate}}\right] = 12500 \text{ g of jam}$$

12500g/(454 g/jar) = 27.5 jars would contain a toxic dose.

Other methods showing reasoning and the correct answer are also acceptable.

3. Isotopes of oxygen have been crucial in understanding the history of climate change. Of the three stable isotopes of oxygen, the pair that provide insight into past temperatures are ¹⁸O and ¹⁶O.

From the point of view of protons, neutrons, chemical properties, and physical properties, list two similarities and two differences between ¹⁸O and ¹⁶O.

3. <u>SOLUTION</u>

Similarities		Difference	es
 They each have 8 protons per atom 	18 O	Each atom has	Has a higher
 They have similar chemical 		10 neutrons.	mass and
properties			density. (Water containing ¹⁸ O
			will evaporate
			more slowly.)
	16 O	Each neutron	Has a lower
		has 8 neutrons.	mass and
			density.

4. Gallium, which is replacing the toxic element mercury in fever thermometers, has an atomic mass is 69.723 amu.

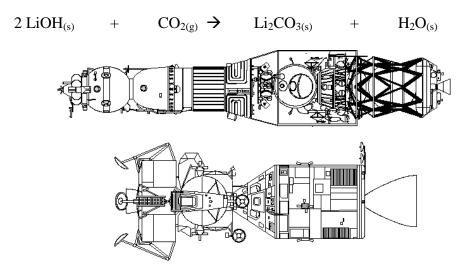
The following table shows the relative abundance for each of gallium's two isotopes.

Isotope	Relative	
	Abundance	
⁶⁹ Ga	60.1 %	
???	39.9 %	

Calculate the mass number of the missing isotope.

4. <u>SOLUTION</u>

```
69(0.601) + x (0.399) = 69.723.


0.399x + 41.469 = 69.723.

x = (69.723 - 41.469) / 0.399

x = 70.81
```

The missing isotope is ⁷¹Ga with a mass number of 71.

5. In space vehicles, CO₂(carbon dioxide) has to be removed to prevent it from becoming toxic to astronauts. This is done by inserting cylinders of LiOH in the cabin of the vehicles, and then the following reaction occurs:

In a typical day, according to a study, a crew of four astronauts will exhale a total of 3600 grams of CO_2 .

How many kg of LiOH are needed to absorb such an amount of CO₂?

5. SOLUTION

3600 g CO₂
$$\left(\frac{mole}{12 + 2(16) g}\right) = \frac{3600}{44} moles = 81.818...moles CO2$$

From the balanced equation, we observe that two moles of LiOH are needed to react with every 1 mole of CO₂:

81.818 moles
$$CO_2\left(\frac{2 LiOH}{1CO_2}\right) = 163.636...$$
moles LiOH

163.636...moles LiOH
$$\left(\frac{7+16+1g}{mole}\right)$$
 = 3927 g of LiOH

$$3927 \text{ g of LiOH} = 3.9 \text{ kg}$$

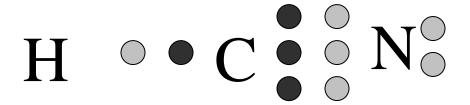
6. The following table gives the mass of each element found in a 75 kg human body.

ELEMENT	%	Mass (g)	
О	65	48750	
C	18	13500	
Н	10	7500	
N	3	2250	
Ca	1.5	1125	
P	1.2	900	W W
K	0.2	150	₽ M
S	0.2	150	W W
Cl	0.2	150	
Na	0.1	75	
Mg	0.05	37.5	A A
Fe	0.05	37.5	

Use these numbers to calculate the **total number of atoms** in a 75 kg human body.

6. <u>SOLUTION</u> (in the answer booklet, you can include this table without the formulae mentioned in the headings and without the answers, needless to say!)

ELEMENT	Mass % in the human body	Mass (g)	Molar mass (g/mole)	Moles = mass/molar mass	Atoms = moles *6.02 X 10 ²³
О	65	48750	16	3046.875	
С	18	13500	12	1125	
Н	10	7500	1	7500	
N	3	2250	14	160.7143	
Ca	1.5	1125	40	28.125	
P	1.2	900	31	29.03226	
K	0.2	150	39	3.846154	
S	0.2	150	32	4.6875	
Cl	0.2	150	35.5	4.225352	
Na	0.1	75	23	3.26087	
Mg	0.05	37.5	24	1.5625	
Fe	0.05	37.5	56	0.669643	
			total	11908	7.2 X10 ²⁷ atoms


COMPETENCY 3 Communicating With the Language of Science

7. The seed within a peach pit contains a small amount of cyanogenic glucosides, compounds that react with stomach acid to produce the poison hydrogen cyanide, HCN.

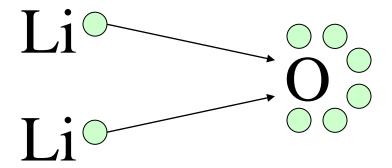
Draw a Lewis dot structure for HCN and find the total number of covalent chemical bonds in one molecule of this poisonous compound.

7. SOLUTION

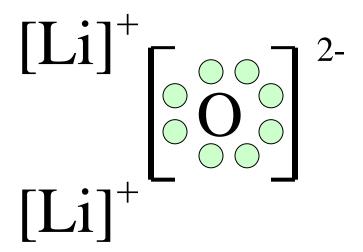
There are four pairs of shared electrons, equivalent to <u>four</u> covalent bonds. Or student can write: one triple bond and one single bond.

Check:

Element	Valence	Bonds
		needed
H	1	2 - 1 = 1
C	4	8 - 4 = 4
N	5	8 - 5 = 3


Bonds = total of 8/2 electrons per bond = 4.

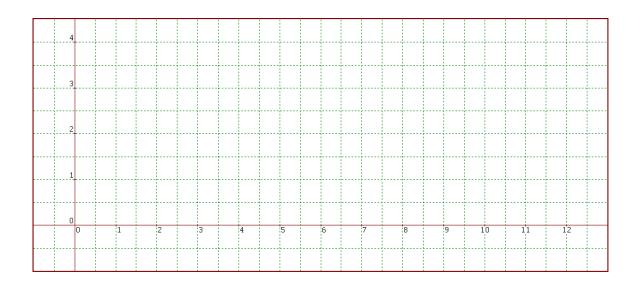
- 8. To prevent the oxidation of lithium metal before it is placed in long-lasting batteries, it has to be stored in Vaseline jelly. If stored in oil, as is done with the rest of its group's members, lithium floats to the top and still reacts with oxygen.
 - a) Use Lewis dot structures to reveal how oxygen (O) reacts with lithium (Li).
 - b) Then also draw a diagram to represent the product of this reaction.



8. SOLUTION

a) REACTION (each dot represents a valence electron)

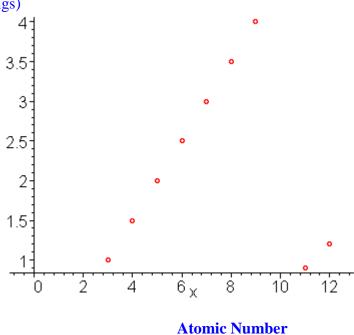
b) IONIC PRODUCT


9. On the Cartesian plane provided, plot the electronegativity of the elements lithium through magnesium versus their atomic numbers.

The electronegativities of the elements are listed in the table below in increasing order.

To correctly match the electronegativities with their respective atomic numbers, you have to use your knowledge of the electronegativity trends within a period and within a group(family).

Correctly label both axes and label the graph with an appropriate title.


Til4
Electronegativity values
for elements 3→12
(Paulings = unit)
0.9
1
1.2
1.5
2
2.5
3
3.5
4
cannot be measured

9. <u>SOLUTION</u>

ELECTRONEGATIVITY VERSUS ATOMIC NUMBER

Electronegativity (Paulings)

RATIONALIZATION FOR TEACHERS (if needed)

- Neon(10) has no electronegativity because it does not bond.
- From Li(3) to F(9) electronegativities increase across the period
- ₁₁Na 's value has to be lower than ₃Li's because electronegativities decrease as you increase atomic number within a group.
- 12Mg 's value has to be lower than 4Be 's for the same reason (group trend).
- At the same time, Mg's value has to be higher than Na's because of the trend across the period

- 10. What three things have to managed more efficiently to reduce a society's ecological footprint?
- 11. When jeans are bleached with chlorine why is that considered an oxidation, even though oxygen is not involved in the reaction?
- 12. Which TWO of these reactions is exothermic?
 - a) Sorbitol and especially xylitol cause a cold sensation in the mouth when they dissolve in saliva.
 - b) Frying some potatoes until they turn golden-brown.
 - c) Water condensing on glass.
 - d) The neutralization of KOH with H₂SO₄.
- 13. If phosphate is only soluble with ammonium or alkali metals, identify the formula of the precipitate formed by mixing $K_3PO_{4(aq)}$ with $Ca(NO_3)_{2(aq)}$
- 10. Water, metal resources and energy
- 11. Chlorine plays the same electron-stealing role as oxygen.
- 12. c and d
- 13. $Ca_3(PO_4)_2$
- 14. The following table reveals concentrations of mercury found in water and in various organisms in the Gulf of Mexico in the year 2000.

Form a hypothesis about why algae have more mercury than the water itself, and why different fish have various concentrations of mercury.

		Eating habits	Concentration of mercury(ppm)
sea water			< 0.001
microscopic algae		Plant-like; makes its own food; serves as food for small fish	0.032
butterfish		The butterfish feeds on small fish, squid	0.058
white shark	The state of the s	Fish, marine mammals, who in turn eat fish	0.988

 $Source: http://www.cfsan.fda.gov/\sim frf/sea-mehg.html$

14. SOLUTION

The rate at which algae excrete mercury is lower than their intake rate. In other words, algae filter the mercury and <u>bioconcentrate</u> it because organic compounds within their cells bond to the toxic metal. When small fish feed on algae, the fish continue to accumulate the poison by a similar mechanism. Out of the three

organisms, the shark is the highest on the food chain, so it $\underline{\textit{bioaccumulates}}$ the most mercury.