Understanding the Theory Behind the Ka Lab

- The purpose of the lab is to gather enough data so that we could calculate the K_{A} of the acid $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathbf{H}$.
- Remember for $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}=\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}{ }_{(\mathrm{aq})}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}$

$$
\mathrm{K}_{\mathrm{A}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]}
$$

- So we need to get the equilibrium $\left[\mathrm{H}^{+}\right],\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]$and [$\left.\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$
- We can get the first two from the $\mathbf{p H}$.
- Think of the ICE chart and you'll realize why $\left[\mathrm{H}^{+}\right] \&\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\right]$ are equal
- To get $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]$, we could do a titration with NaOH and see how much of NaOH is needed to neutralize the $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$:

$$
\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

We let

$$
\begin{aligned}
& n_{1}=\text { moles of } \mathrm{NaOH}=\mathrm{C}_{1} \mathbf{V}_{1} \\
& n_{2}=\text { moles of } \mathrm{CH}_{3} \mathrm{CO}_{2} H=C_{2} V_{2}
\end{aligned}
$$

Since the base and weak acid react in a 1:1 ratio, then $\mathbf{n}_{1}=\mathbf{n}_{\mathbf{2}}$, so:

$$
\mathbf{C}_{1} \mathbf{V}_{1}=\mathbf{C}_{2} \mathbf{V}_{2}
$$

If we measure the volume of a known concentration of NaOH needed to neutralize a known volume of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, the only unknown in the formula will be $\mathbf{C} 2$, the last concentration we are looking for.

Let's assume that an equilibrium was created by combining 0.010 L of $1.0 \mathrm{~mole} / \mathrm{L}$ Fe^{+3} and 0.010 L of $1.0 \mathrm{~mole} / \mathrm{L} \mathrm{SCN}^{-}$:
$\underset{\text { Yellow-orange }}{\mathrm{Fe}^{+3}} \quad \underset{\text { colorless }}{\mathrm{SCN}^{-}} \quad=\quad \underset{\text { DEEP RED }}{\mathrm{FeSCN}^{+2}}$
a) Do the calculations to make sure that adding 0.0050 L of $1.0 \mathrm{~mole} / \mathrm{L} \mathrm{Fe}^{+3}$ to the above will indeed increase the concentration of Fe^{+3} and subsequently shift the equilibrium to the right.
b) Will adding 0.40 grams of SCN^{-}be more effective in disturbing the original equilibrium? Show why or why not.

Answer

a) Original $\left[\mathrm{Fe}^{+3}\right]=\frac{n}{V_{\text {total }}}=\frac{C V}{V_{\text {total }}}=\frac{1.0 \text { moles } / L(0.010 \mathrm{~L})}{0.010+0.010 \mathrm{~L}}=0.50 \mathrm{moles} \mathrm{Fe}^{+3} / \mathrm{L}$

Adding 0.005 L of $1.0 \mathrm{~mole} / \mathrm{L} \mathrm{Fe}^{+3}$ is adding:
$\mathrm{n}=\mathrm{CV}=1.0 \mathrm{~mole} / \mathrm{L}(0.005 \mathrm{~L})=0.005$ moles of Fe^{+3} while increasing the volume by 0.005 L :
new $\left[\mathrm{Fe}^{+3}\right]=\frac{n_{\text {total }}}{V_{\text {total }}}=\frac{\text { new } n+C V}{V_{\text {total }}}=\frac{0.005 \text { moles }+1.0 \text { moles } / L(0.010 L)}{0.010+0.010 L+0.005 L}=0.60 \mathrm{moles} \mathrm{Fe}^{+3} / \mathrm{L}$
So indeed, the concentration has gone up, and it will create more effective collisions with SCN-, increasing the forward rate and driving the reaction towards more red FeSCN^{+2}.
b) Original $\left[\mathrm{SCN}^{-}\right]=\frac{n}{V_{\text {total }}}=\frac{C V}{V_{\text {total }}}=\frac{1.0 \mathrm{moles} / L(0.010 \mathrm{~L})}{0.010+0.010 \mathrm{~L}}=0.50 \mathrm{moles}_{\mathrm{SCN}}{ }^{-} / \mathrm{L}$ Adding 0.40 grams of SCN^{-}is adding:

$$
\begin{aligned}
\mathrm{m} / \mathrm{M} & =\mathrm{n}=0.40 \text { grams of } \mathrm{SCN}^{-} /(32+12+14 \mathrm{~g} / \mathrm{mole})=0.00690 \mathrm{moles} \\
\text { new }[\mathrm{SCN}] & =\frac{n_{\text {total }}}{V_{\text {total }}}=\quad \frac{\text { new } n+C V}{V_{\text {total }}}=\frac{0.00690 \text { moles }+1.0 \mathrm{moles} / L(0.010 \mathrm{~L})}{0.010+0.010 \mathrm{~L}}=0.85 \mathrm{moles} / \mathrm{L}
\end{aligned}
$$

So the concentration goes up more dramatically it will be more effective in disturbing the equilibrium, so it should go a deeper red.
(Notice that by adding a dissolving solid we don't change the volume appreciably, so we assume that it's still the same as the original created by adding the two solutions)

