$4(3.1415)(6378 \ km^2)\left(\frac{1000^2m^2}{km^2}\right)(0.70) = 5.61 \ X10^{10} \ m^2$ of water on the surface

Volume of water that would be evaporated in 1 yr if it was the sole absorber =

Area* depth = $5.61 \times 10^{10} \text{ m}^2 * 10 \text{ m} = 5.61 \times 10^{11} \text{ m}^3$.

Mass of water = $5.61 \text{ X}10^{11} \text{ m}^3 * 1000 \text{ kg/m}^3 = 5.61 \text{ X}10^{14} \text{ kg}$

Moles of water 5.61 $\times 10^{14}$ kg /(0.018 kg/mole) = 3.116878792 $\times 10^{16}$ moles

Joules absorbed by earth in 1 year = $3.116878792 \times 10^{16}$ moles * 41 kJ/mole = 1.22×10^{18} kJ = 1×10^{21} J

<u>Check:</u> solar radiation reaching upper atmosphere: 1360 W/m^2

Of the 1360 W/m² =1360 $\frac{J}{sm^2}$ that reaches the earth's upper atmosphere, only 70% penetrates. 4(3.1415)(6378 km²) $\left(\frac{1000^2m^2}{km^2}\right)$ (0.70) $\left(1360\frac{J}{sm^2}\right)\left(\frac{3600s}{h}\right)\left(\frac{24h}{d}\right)\left(\frac{365.25d}{y}\right) = 2 \times 10^{21} \text{ J/y}$