Phys Sc 430

Year-end Review of Moles

1. Two of something is a pair, 12 of something is a dozen, 20 of something is a score, and \qquad of something is a mole.
2. What is the molar mass of helium? Include the proper unit.
3. What is the molar mass of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$?

4. What is the total of the molar masses represented by: $2 \mathrm{H}_{2}+\mathrm{O}_{2}$?
5. Find the mass of 3.4 moles of NaBr .
6. How many moles are there in 35.5 g of Cl_{2} ?
7. Determine the simplest formula of a compound containing $37.5 \% \mathrm{C}, 12.5 \% \mathrm{H}$, and $50.0 \% \mathrm{O}$ by mass.
8. Only one isotope of this element exists.

One atom of this isotope has a mass of $9.123 \times 10^{-23} \mathrm{~g}$. Identify the element.
9. The reusable solid rocket boosters of the U.S. space shuttle use a mixture of aluminum and ammonium perchlorate for fuel:
$3 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{NH}_{4} \mathrm{ClO}_{4(\mathrm{SO}} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3_{(\mathrm{s})}}+\mathrm{AlCl}_{3(\mathrm{~s})}+3 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
a. Let's pretend that some engineer calculated that to generate enough thrust we needed to produce 2500 kg of steam $\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]$.
What total mass of solids must react to generate this amount of
 gas?

10. When a mixture of silver metal and sulphur is heated, $\mathrm{Ag}_{2} \mathrm{~S}$ is formed:

$$
16 \mathrm{Ag}_{(\mathrm{s})}+\mathrm{S}_{8(\mathrm{~s}} \rightarrow^{8} \mathrm{Ag}_{2} \mathrm{~S}_{(\mathrm{s})}
$$

a. How many moles of silver must react to produce 2 moles of silver (I)sulphide?
b. What mass of $\mathrm{Ag}_{2} \mathrm{~S}_{(\mathrm{s})}$ will be produced from mixing a mole of silver with a mole of sulphur?-----What mass of which reactant will be left unreacted?

Answers
$\begin{array}{llll}\text { 1. mole } 2.4 .0 \mathrm{~g} / \mathrm{mole} & \text { 3. } 187.5 \mathrm{~g} / \mathrm{mole} & 4.36 \mathrm{~g} & 5.350 \mathrm{~g}\end{array}$
6. 0.500 moles 7. CH4O (based on a total of 100 g , convert each into moles) 8. divide 1 atom by Avogadro's \#, to get moles and divide mass by the previous answer to get g/mole... $54.9 \mathrm{~g} / \mathrm{mole}=\mathrm{Mn}$ $9.1875 \mathrm{~kg}+8160 \mathrm{~kg}=10035 \mathrm{~kg} \quad 10$. a. 4 moles \quad b. 123 g . Do not use 1 mole of sulfur; it's in excess. 240 g of it are in excess

