Answers to non communist

1.	D
2.	С
3.	Α
4.	В
5.	С
6.	Α
7.	Ε
8.	Α

9.

moles	A +	B =	С
Ι	0.0100	0.0200	0
C (R/F)	Х	Х	Х
E	0.0100-x	0.0200-x	0+x = x

$$\begin{split} &K = [C]/([A][B]) \\ &0.371 = [x/2]/([(0.0100-x)/2][(0.0200-x)/2]) \end{split}$$

This leads to a quadratic equation: $0.00007420000000 - 0.011130000x + 0.3710000000x^{2} = 0$

x = 0.00003689493221 or 5.420798685

so [C] = 0.0000369/2 = 0.000018 M [B] = 0.010 M [C] = 0.0050 M

10. Let x = number of grams of SrF₂ that dissolve:

Moles/L	$SrF_{2(s)} =$	Sr ⁺² _(aq)	$+2 F^{-1}_{(aq)}$
Ι	у	0	0
C (R/F)	x dissolve	Х	2x
E	у-х	0 + x = x	$0 + 2\mathbf{x} = 2\mathbf{x}$

But we can't really have moles/L of a solid, so the K expression excludes solids:

$$\begin{split} &K = [Sr^{+2}{}_{(aq)}][F^{-1}{}_{(aq)}]^2 = [x][2x]^2 = 7.8 \ X \ 10^{-10} \\ &4x^3 = 7.8 \ X \ 10^{-10} \\ &x = 0.0005798889998 \ moles/L \\ &0.0005798889998 \ moles/L \ * \ 1.0L \ *(87.6 + 19*2) = 0.073 \ g \ will \ dissolve \end{split}$$

11.

Beaker	Reaction?	Inference
1	No	Q ⁺³ >V ⁺³
2	Yes	$V^{+3} > M^{+?}$
3	Yes	$X^{+2} > V^{+3}$
4	no	$X^{+2} > Q^{+3}$

We see the strongest oxidizing agent at work in reaction 3 where it is stealing electrons from metal V:

$$3 X^{+2} + 2 V \rightarrow 2 V^{+3} + 3 X$$

12. Hydrogen's reduction/oxidation potential is 0.00V under standard conditions:

 $Br_{2} = 2 Br^{-} + 2e^{-} \qquad 1.09 V$ $H_{2} + 2e^{-} = 2 H^{+} \qquad 0.00 V$ $Br_{2} + H_{2} = 2 Br^{-} + 2 H^{+} \qquad 1.09 V$

Notice that you have to choose something with a positive reduction potential to end up with the same *positive* value overall.

13. Since the standard reduction potentials are 1.0 M, the most likely source of error is choosing a concentration that is less than 1.0 M for the *oxidizing agent* at the cathode or choosing a concentration greater than 1.0 M for the reducing agent's companion cation. In both of these cases, by LeChatelier's principle, a lower voltage will result.

Example: $Zn + Cu^{+2} = Zn^{+2} + Cu$