p142-44 answers More In-class examples:

1. Find the net force:
$32 \mathrm{~N}-23 \mathrm{~N}=9 \mathrm{~N}$ downwards.

2. a) Find the applied force(it's applied 25° with horizontal) if a 20 $\mathbf{k g}$ wagon is accelerating along the horizontal at $2.0 \mathrm{~m} / \mathbf{s}^{2}$.

$$
\mathrm{m}=20 \mathrm{~kg} ; \mathrm{a}=2.0 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\mathbf{F}=\mathbf{m a}=\mathbf{F}_{\text {effective }}=\mathbf{F}_{\text {applied }} * \cos \theta
$$

$$
20(2.0)=F_{\text {applied }} \cos (25)
$$

$$
F_{\text {applied }}=40 / \cos 25=44 \mathrm{~N}
$$

b) First find $m g$ for the wagon and then show that there is not enough force to lift the wagon off the ground as it's being pulled.

Weight $=\mathbf{m g}=\mathbf{2 0}(9.8)=196 \mathrm{~N}$ which is greater than
 $\mathrm{F}_{\text {upwards }}=\mathrm{F}_{\text {applied }} \sin \theta$
 $=44 \sin 25=18.6 \mathrm{~N}$

Exercises

$40 \mathrm{~N}-20 \mathrm{~N}=20 \mathrm{~N}$ in the south western direction
b)

0N
2. a) Find the applied force (it's applied 25° with horizontal) if a 30 kg wagon is accelerating along the horizontal at $1.0 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
& F=m a=F_{\text {effective }}=F_{\text {applied }} * \cos \theta \\
& 30(1.0)=F_{\text {applied }} \cos (25) \\
& \mathbf{F}_{\text {applied }}=30 / \cos 25=33 \mathrm{~N}
\end{aligned}
$$

b) Show that there is not enough force to lift the wagon off the ground as it's being pulled.

```
Weight \(=\mathbf{m g}=\mathbf{3 0}(9.8)=\mathbf{2 9 4} \mathbf{N}\) which is greater than
\(\mathrm{F}_{\text {upwards }}=\mathrm{F}_{\text {applied }} \sin \theta\)
\(=33 \sin 25=13.9 \mathrm{~N}\)
```

a) Find the effective force acting on the 20 kg mass accelerating down the $35^{\circ} \mathrm{ramp}$.

$F_{\text {effective }}=m g \sin \theta=20(9.8)(\sin 35)=112.4 \mathrm{~N}$
3. If gravitational acceleration on the moon is $1 / 6^{\text {th }}$ of what it is on Earth, find the weight of a 100 kg man on the moon.
$F=$ mg $_{\text {moon }}$
$=100 \mathrm{~kg}(9.8 / 6 \mathrm{~N} / \mathrm{kg})=163 \mathrm{~N}$
4. You fill a box with 100 g of carbon and a second box with 100 g of Al.
a) Which will have more atoms?
$100 / 12 * 6.02 \times 10^{23}>100 / 27 * 6.02 \times 10^{23}$
b) Which, if any will hit the ground first? Why?

Neither, NOT because they have the same mass, but because g is the same for all masses.

