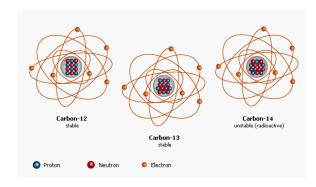
STE Pretest 1.1

1. Fill in the blanks.

Name	Isotope Notation	Atomic Number	Mass Number	Number of Protons	Number of Neutrons	Number of Electrons
oxygen	¹⁷ 80	8	17	8	9	8
sulfur	33 16	16	33	16	17	16


2. Describe an experiment that you could do to help you prove that a hydrogen isotope has the same chemical properties as a different hydrogen isotope.

Burn each one. In both cases you will get the same popping sound and the same product---water.

3. What are isotopes? Give an example not involving carbon.

Isotopes are two or more different versions of the same element with different mass numbers. Examples ³H and ¹H.

5. Give examples of how the nuclear properties of normal ¹H differ from those of radioactive ³H and what's responsible for the difference.

It's the extra neutrons that make ³H radioactive. ¹H is not radioactive.

6. Draw the Bohr-Rutherford model for the following:

¹⁵C

6p 2e) 4e 9n

7. How many **upquarks** are in a lithium nucleus with a mass of 7?

A lithium nucleus has 3 protons and every proton consists of 2 up quarks and a down quark, thus, so far, there 3(2) = 6 up quarks in each Li. But 7 Li also has 7-3 = 4 neutrons, each of which has 1 up quark. So Li's neutrons contribute 4 more up quarks. Total = 10 up quarks.