STE PART

Pretest 1.4

1. The technical definition of a mole is the number of particles found in 12.0000 grams of ${ }^{12} C$. What number are we referring to?
2. What is the molar mass of
a. $\quad \mathrm{Be}(\mathrm{OH})_{2}$
b. ${ }_{23} \mathrm{~V}$
3. Convert the following:
a. $\quad 300 \mathrm{~g}$ of $\mathrm{Mg}=$ \qquad moles
b. $\quad 1 \mathrm{~g}$ of water $=$ \qquad moles

c. 2 moles of O_{2} per $\mathrm{L}=$ \qquad grams/L
d. 6 moles of $\mathrm{O}_{2}=$ \qquad molecules
e. 6 moles of $\mathrm{O}_{2}=$ \qquad atoms
4. Monty Mole found a mole of gold. If gold sells for $\$ 48$ US per gram in Oct 2014, what is the value of Monty's mole of gold?

5. Two molecules of helium (He) is how many grams?
6. Given: $4 \mathrm{NH}_{(\mathrm{g})}+5 \mathrm{O}_{(\mathrm{g})} \rightarrow \quad 4 \mathrm{NO}_{(\mathrm{g})}+\quad 6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})+}+673 \mathrm{~kJ}$
a. How many moles of water will be produced if 5 moles of ammonia, $\mathrm{NH}_{3(\mathrm{~g})}$, react?
b. How many grams of oxygen reacted if only one mole of NO reacted?
c. How many grams of oxygen react with every 1.0 gram of $\mathrm{NH}_{(\mathrm{g})}$?
d. How many kJ of heat are released when 3 moles of oxygen react?
7. Given: $\mathrm{H}_{2} \mathrm{SO}_{4} \quad+\quad 2 \mathrm{KOH} \rightarrow \quad \mathrm{K}_{2} \mathrm{SO}_{4}+\quad 2 \mathrm{H}_{2} \mathrm{O}$

What concentration of KOH is needed (in g/L) if 50 mL of KOH are supposed to neutralize 300 ml of a $0.20 \mathrm{~g} / \mathrm{L} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution ?

STE

Pretest 1.4 Solutions

1. The technical definition of a mole is the number of particles found in 12.0000 grams of ${ }^{12} C$. What number are we referring to?
6.02×10^{23} particles(in this case atoms)/mole = Avogadro's number
2. What is the molar mass of
a. $\quad \mathrm{Be}(\mathrm{OH})_{2}$

$$
9+16 * 2+1 * 2=43 \mathrm{~g} / / \mathrm{mole}
$$

b. $\quad{ }_{23} \mathrm{~V}$
$51 \mathrm{~g} / \mathrm{mole}$
3. Convert the following:
a. $\quad 300 \mathrm{~g}$ of $\mathrm{Mg}=$ \qquad moles
$300 \mathrm{~g}(\mathrm{~mole} / 24 \mathrm{~g})=12.5$ moles
b. $\quad 1 \mathrm{~g}$ of water $=$ \qquad moles
$1 \mathrm{~g}($ mole $/ 18 \mathrm{~g})=0.056$ moles

Remember:

I'm a little furry animal that multiplies. If you have moles multiply by molar mass to get mass in grams. To get molecules, multiply moles by $6.02 \mathrm{X} 10^{23}$.
c. 2 moles of O_{2} per $\mathrm{L}=$ \qquad grams/L

2 moles ($32 \mathrm{~g} / \mathrm{mole}$)/L $=64 \mathrm{~g} / \mathrm{L}$
d. 6 moles of $\mathrm{O}_{2}=$ \qquad molecules

6 moles (6.02×10^{23} molecules $/$ mole) $=3.6 \times 10^{24}$ molecules
e. $\quad 6$ moles of $\mathrm{O}_{2}=$ \qquad atoms
6 moles of O_{2} (6.02×10^{23} molecules $/ \mathrm{mole}$) (2 atoms of $\mathrm{O} / \mathrm{molecule}$ of O_{2})
$=7.2 \times 10^{24}$ atoms of O
4. Monty Mole found a mole of gold. If gold
sells for $\$ 48$ US per gram in Oct 2013, what is the value of Monty's mole of gold?
1 mole $\mathrm{Au}=197 \mathrm{~g}$
$197 \mathrm{~g}(\$ 48 / \mathrm{g})=\$ 9456 \mathrm{US}$
5. Two molecules of helium (He) is how many grams?

$$
2 \text { molecules He }\left(\frac{\text { mole }}{6.02 \times 10^{23} \text { molecules }}\right)\left(\frac{4 \mathrm{~g}}{\text { mole }}\right)=1.33 \times 10^{-23} \mathrm{~g} \text { He }
$$

6. Given: $4 \mathrm{NH}_{(\mathrm{g})}+5 \mathrm{O}_{(\mathrm{g})} \rightarrow \quad 4 \mathrm{NO}_{(\mathrm{g})}+\quad 6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})+}+673 \mathrm{~kJ}$
a. How many moles of water will be produced if 5 moles of ammonia, $\mathrm{NH}_{3(\mathrm{~g})}$, , eact ?

5 moles $\mathrm{NH}_{3}\left(6 \mathrm{H}_{2} \mathrm{O} / 4 \mathrm{NH}_{3(\mathrm{~g})}\right)=7.5$ moles $\mathrm{H}_{2} \mathrm{O}$
b. How many grams of oxygen reacted if only one mole of NO reacted?

1mole $\mathrm{NO}\left(\frac{5 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{NO}}\right)$
$=1.25$ moles of oxygen
1.25 moles $(32 \mathrm{~g} / \mathrm{mole})=40 \mathrm{~g}$
c. How many grams of oxygen react with every 1.0 gram of $\mathrm{NH}_{(\mathrm{g})}$?
$1.0 \mathrm{~g} \mathrm{NH} 3(\mathrm{~mole} / 17 \mathrm{~g})=0.05882352941176471$ moles NH 3

0.074 moles $\mathrm{O}_{2}(32 \mathrm{~g} / \mathrm{mole})=2.35 \mathrm{~g} \mathrm{O}_{2}$
d. How many kJ of heat are released when 3 moles of oxygen react?

3 moles $\mathrm{O}_{2}\left(\frac{673 \mathrm{~kJ}}{5 \mathrm{molO}_{2}}\right)=404 \mathrm{~kJ}$
7. Given: $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \quad \mathrm{K}_{2} \mathrm{SO}_{4}+\quad 2 \mathrm{H}_{2} \mathrm{O}$

What concentration of KOH is needed (ing/L) if 50 mL of KOH are supposed to neutralize 300 ml of a $0.20 \mathrm{~g} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
$\mathbf{m}=\mathbf{C V}=0.20 \mathrm{~g} / \mathrm{L}(0.300 \mathrm{~L})=0.06 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$
$0.06 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~mole} / 98 \mathrm{~g})=6.122 \mathrm{X}_{10} 0^{-4}$ moles $\mathrm{H}_{2} \mathrm{SO}_{4}$
$6.122{\mathrm{X} 10^{-4} \text { moles } \mathrm{H}_{2} \mathrm{SO}_{4}\left(2 \mathrm{~mol} \mathrm{KOH} / 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.00122 \text { moles } \mathrm{KOH}}^{2}$
0.00122 moles $\mathrm{KOH}(56 \mathrm{~g} / \mathrm{mole})=0.06832 \mathrm{~g}$ of KOH
$\mathbf{C}=\mathbf{m} / \mathbf{V}=0.06832 \mathrm{~g}$ of $\mathrm{KOH} / 0.050 \mathrm{~L}=1.37 \mathrm{~g} / \mathrm{L}$
FLASHBACK
8. What is the chemical formula of a compound created by mixing Cu^{+2} with $\mathrm{PO}_{4}{ }^{3-}$?

Total charge has to be zero, so $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
9. From the second period of the periodic table, identify:
a) the atom with the largest atomic radius Li
b) the atom with the highest electronegativity

F
c) the atom with the highest ionization energy Ne
10. There are three isotopes of Q: 312 , 316 and 317. The most abundant one is 312 .
75% of Q is ${ }^{312} \mathrm{Q}$. If the atomic mass of Q is 313.16 , what is the percentage abundance of ${ }^{316} \mathrm{Q}$?
$312 * .75+x^{*} 316+(0.25-x) * 317=313.16$
$\mathrm{x}=0.09$
$9 \%{ }^{316} \mathrm{Q}$

