Solutions to page 68

1. Here's the fast way, as shown in class. But from \# 2 onwards; I'll only show it, step by step using proportions instead of the ratio.
a. 3 moles of $\mathrm{NH}_{3}\left[\frac{5 \mathrm{O}_{2}}{4 \mathrm{NH}_{3}}\right]=3(5) / 4=3.75$ moles of O_{2}
or
a. equation shows: $\quad 5 \mathrm{O}_{2} \quad 4 \mathrm{NH}_{3}$, so

$$
\begin{aligned}
& \frac{5}{x}=\frac{4}{3} \\
& 4 x=15 \\
& x=3.75 \text { moles of } O_{2}
\end{aligned}
$$

b.

3 moles of $\mathrm{O}_{2}\left[\frac{4 \mathrm{NO}}{5 \mathrm{O}_{2}}\right]=\frac{3 * 4}{5}=2.4$ moles NO
2.4 moles $N O\left[\frac{30 \mathrm{~g}}{\text { mole }}\right]=72 \mathrm{~g} \mathrm{NO}$

Or

$$
\frac{5}{3}=\frac{4}{x}
$$

$$
x=12 / 5=2.4 \text { moles of NO }
$$

$$
2.4 \text { moles of NO }(14+16 \mathrm{~g} / \mathrm{mole})=72 \mathrm{~g}
$$

c. $\quad 2.8 \mathrm{~g} \mathrm{NO}\left[\frac{\text { mole }}{30 \mathrm{~g}}\right]=0.0933$ moles NO
0.0933 moles $\mathrm{NO}\left[\frac{6 \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{NO}}\right]=0.14$ moles of $\mathrm{H}_{2} \mathrm{O}$
or $\quad 2.8 \mathrm{~g} \mathrm{NO} /(14+16 \mathrm{~g} / \mathrm{mole})=0.0933$ moles NO

$$
\begin{gathered}
\frac{4}{0.0933}=\frac{6}{x} \\
\mathrm{x}=0.14 \text { moles of water }
\end{gathered}
$$

d. $\quad 90 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\left[\frac{\text { mole }}{18 g}\right]=5$ moles $\mathrm{H}_{2} \mathrm{O}$

5 moles $\mathrm{H}_{2} \mathrm{O}\left[\frac{5 \mathrm{O}_{2}}{6 \mathrm{H}_{2} \mathrm{O}}\right]=\frac{5 * 5}{6}=4.166$ moles O_{2}
4.166 moles $\mathrm{O}_{2}\left[\frac{32 \mathrm{~g}}{\text { mole }}\right]=133 \mathrm{~g} \mathrm{O}_{2}$
or $\quad 90 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} /(18 \mathrm{~g} / \mathrm{mole})=5.0$ moles $\mathrm{H}_{2} \mathrm{O}$

$$
\frac{5}{x}=\frac{6}{5}
$$

$\mathrm{x}=25 / 6=4.2$ moles O_{2}
4.2 moles $\mathrm{O}_{2}(32 \mathrm{~g} / \mathrm{mole})=133 \mathrm{~g}$
2. a. answer $=8$ moles
b. $\quad \mathrm{H}_{2}+\mathrm{Cu}_{2} \mathrm{~S} \rightarrow 2 \mathrm{Cu}+\mathrm{H}_{2} \mathrm{~S}$
$1 \mathrm{~g} \mathrm{H}_{2} /(2 \mathrm{~g} / \mathrm{mole})=0.5 \mathrm{~mole}_{2}$
From ratio, twice as many moles of Cu will be produced:
$0.5(2)=1.0$ moles $=63.5 \mathrm{~g}$
3. a. Given: $\quad \mathrm{C}_{6} \mathrm{H}_{14}+9.5 \mathrm{O}_{2} \rightarrow \quad 6 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}+3500$
kJ
a. How much heat in kJ will be released if only 0.34 moles of $\mathrm{C}_{6} \mathrm{H}_{14}$ react?(treat kJ like moles)
b. How many moles of CO_{2} will escape if 4.5 moles of oxygen react?

Answer Since kJ are part of the equation, you can treat them like moles.
0.34 moles of $\mathrm{C}_{6} \mathrm{H}_{14}\left(\frac{3500 \mathrm{~kJ}}{1 C_{6} H_{14}}\right)=\frac{0.34 * 3500}{1}=1190 \mathrm{~kJ}$
b.
$\mathrm{x}=2.84$ moles CO_{2}
4. $\quad 16 \mathrm{KClO}_{3}+3 \mathrm{P}_{4} \mathrm{~S}_{3} \rightarrow 6 \mathrm{P}_{2} \mathrm{O}_{5}+16 \mathrm{KCl}+9 \mathrm{SO}_{2}$
a. How many grams of sulfur dioxide escape each time 0.0010 moles of KClO_{3} react? 0.0010 moles of $\mathrm{KClO}_{3}\left(\frac{9 \mathrm{SO}_{2}}{16 \mathrm{KClO}_{3}}\right)=\frac{0.0010 * 9}{16}=0.0005625$ moles
SO_{2}
0.0005625 moles $\mathrm{SO}_{2} *(64 \mathrm{~g} / \mathrm{mole})=0.036 \mathrm{~g} \mathrm{SO}_{2}$
b. $\quad 4.4$ g of $\mathrm{P}_{4} \mathrm{~S}_{3}\left[\frac{\text { mole }}{4(31)+3(32) g}\right]=0.02$ moles of $\mathrm{P}_{4} \mathrm{~S}_{3}$.

Then apply the ratio and you will obtain 0.06 moles of SO_{2}.
c. $\quad 12.2 \mathrm{~g} \mathrm{KClO}_{3} /(39+35.3+48 \mathrm{~g} /$ mole $)=0.10$ moles of KClO_{3}

Apply the ratio: $\quad=0.10$ moles of KCl
Then convert to grams: $0.10(39+35.5)=7.5 \mathrm{~g} \mathrm{KCl}$
5. a. equation reveals that $4 \mathrm{KNO}_{3}$ react with 7 moles of C , so

Apply the ratio and you will get 3.5 moles of C
3.5 moles of $\mathrm{C}=3.5 * 12=42 \mathrm{~g}$ of C
b. $\quad 1010 \mathrm{~g} \mathrm{KNO}_{3}\left[\frac{\text { mole }}{39+14+3 * 16 \mathrm{~g}}\right]_{=} 10$ moles KNO_{3}
from the equation we get the ratio,(remember we are comparing KNO_{3} to both CO and CO_{2}
; $\quad \mathrm{x}=30 / 4=7.5$ moles of CO and 7.5 moles of CO_{2}.
7.5 moles of $\mathrm{CO}_{2} \cdot\left[\frac{44 \mathrm{~g}}{\text { mole }}\right]=330 \mathrm{~g}$ of CO_{2}.
7.5 moles of $\mathrm{CO}_{2} \cdot\left[\frac{28 \mathrm{~g}}{\text { mole }}\right]=210 \mathrm{~g} \mathrm{~g} \mathrm{of} \mathrm{CO}$

$$
\text { Total }=330+210=540 \mathrm{~g} .
$$

c. $\quad 4.4 \mathrm{~g}=0.10$ moles of CO_{2}.

From the ratio, $0.10 / 3=0.033$ moles of S
6. The question was: Vodka is 40% alcohol by volume. Alcohol's density is $0.7893 \mathrm{~g} / \mathrm{mL}$. What's the minimum mass of $\mathrm{H}_{2} \mathrm{CrO}_{4}$ and HCl needed to destroy the alcohol in 2.0 L of vodka?
$3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{CrO}_{4}+12 \mathrm{HCl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+4 \mathrm{CrCl}_{3}+13 \mathrm{H}_{2} \mathrm{O}$
Vodka is 40% alcohol, so: $\quad 0.40(2.0 \mathrm{~L})=0.80 \mathrm{~L}$ of alcohol $=800 \mathrm{~mL}$
$800 \mathrm{~mL}\left[\frac{0.7893 \mathrm{~g}}{\mathrm{ml}}\right]=631.44 \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$\left[\frac{\text { mole }}{2(12)+6(1)+16}\right]=13.72$ moles of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
Apply the ratio from the equation:
13.72 moles of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\left(\frac{12 \mathrm{HCl}}{3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}}\right)=\frac{13.72 * 12}{3}$
$=54.88$ moles of HCl
$=54.88$ moles $\mathrm{HCl}(36.5 \mathrm{~g} / \mathrm{mole})=2003 \mathrm{~g} \mathrm{HCl}$
If they had asked for $\mathrm{H}_{2} \mathrm{CrO}_{4}$.
Repeat the procedure. Start with 13.72 moles of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$. Apply the ratio of $4 / 3$
18.3 moles of $\mathrm{H}_{2} \mathrm{CrO}_{4}$
18.3 moles $\mathrm{H}_{2} \mathrm{CrO}_{4}([2+52+64] \mathrm{g} / \mathrm{mole})=2159 \mathrm{~g} \mathrm{H}_{2} \mathrm{CrO}_{4}$.

