Phys Sc 416/30

Pretest 4.3 *Test will be based on all of the <u>underlined</u> review topics listed below and other flashback topics.*

Environment

Magnetism

2. Indicate 2 places in the diagram where you would be able to place a compass and see it point to the *right*.

*

Conductors and Insulators

3. **True? Or False?**

- a. Plastic is an insulator, meaning that it is a poor conductor of heat and electricity._T__
- b. Copper and silver are better conductors than aluminum and tungsten_____T___
- c. To avoid extra resistance, it is better to use a longer wire than necessary__F___
- d. To improve conductance, one should use as thin a wire as possible__F___
- e. Placing electrical wires next to a heat source is a good idea since it will improve conductance__F___

The Joule Effect

4. How much power is lost if a high tension wire uses 50 000 V to transmit 100 000 W of power? R for the high tension wire = 1000Ω

$$P = VI$$

100 000 W= 50 000 I
I = 2A
Power lost = I²R
= 2²(1000)
= 4000 W

Models of the Atom

- 5. TRUE? Or FALSE?
- a. According to Democritus, the atom is a small, dense, indivisible sphere. F

b. According to Thomson, the atom is a sphere in which the positive charges are concentrated in a nucleus and the negative charges surround the nucleus. F

c. According to Rutherford, the atom is a positive sphere in which the negative charges are evenly distributed throughout. F

d. According to Bohr, the atom is a sphere in which the positive charges are concentrated in a nucleus and the negative charges travel around the nucleus in orbits(energy levels is better). T

6. Following his experiments dealing with the deflections of alpha particles passing through a thin sheet of gold foil, Rutherford modified the atomic model Thomson had proposed.

Which two of the following statements derive directly from Rutherford's experiments?

- 1- The number of protons is equal to the number of electrons.
- 2- The electrons are contained in a positive sphere made up of protons.
- 3- Protons are concentrated in a very small positive area in the center of the atom.
- 4- Electrons move about in specific orbits.
- 5- An atom contains a very large amount of empty space.

Answer: __3_ and __5___

Preparing Solutions (Includes Dilution)

7. How many grams of KOH are needed to make 200 mL of a 3g /L solution. Outline the steps in used in the laboratory.

0.200L (3 g/L) = 0.6 g Weigh 0.6 g of KOH Dissolve in a beaker with < 200 ml of wate Transfer to a volumetric flask Add water to 200 ml mark and mix.

8. Given 20 L of a 4 mole/L of NaOH solution, how would you prepare 1.0 L of a 1.6 g/L solution? (belongs to 430 part of course)

```
\begin{array}{l} C_1V_1=C_2V_2\\ (4 \mbox{ mole/L}) \ V_1=1.6g/L(mole/40g)(1)\\ *****tricky \mbox{ because they mixed moles/L with g/L, so we have to convert}\\ V_1=0.010L\\ \mbox{Pipette } 0.010 \ L \ \mbox{ from original.}\\ \mbox{Transfer to a } 1.6 \ L \ \mbox{flask.}\\ \mbox{Add water to line and mix.} \end{array}
```

9. How would you prepare three solutions representing the three types of electrolytes?

Add acid to water. Add base to water Add salt to water

Circuits

10. How do you connect three 12 Ω resistors so that your total resistance is 4 Ω ?

Connect them in parallel.

Phys Sc 430 Pretest 4.3 (430 part)

Periodic Trends

- 1. TRUE? Or FALSE?
- a. In Period 2, electronegativity increases as the atomic number increases. T
- b. In Period 2, ionization energy decreases as the atomic number increases. F
- c. In Period 2, atomic radius does not change as the atomic number increases.F

d. In group 1 (alkali metals), boiling points decrease and then increase as the atomic number increases. F

Stoichiometry

1. Nitrogen gas and water vapour are produced when ammonia gas, NH₃, reacts with oxygen gas according to the following balanced chemical equation:

 $4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{O}$

Calculate the mass of oxygen gas needed to produce 0.378 g of nitrogen gas.

0.378 g N₂ (mole/28.0g) = 0.0135 moles N₂

 $0.0135 \text{ moles } N_2 (3 O_2 / 2 N_2) = -0.02025 \text{ moles of } O_2$

0.02025 moles of O_2 (32.0 g/mole) = 0.648 g (notice 3 significant figures)

2. Define the term 'molecular molar mass'.

Molecular molar mass is just molar mass, which is the mass of one mole of molecules, or the *mass* of the number of atoms found in 12.000 grams of 12 C.

3. How many atoms of oxygen are in a mole of ozone, O_3 ?

 $3 \ge 6.02 \ge 10^{23} = 1.81 \ge 10^{24}$ atoms