9. Use the K_{sp} for calcium fluoride to calculate its solubility in grams per liter. (CaF₂: $K_{sp} = 4.0 \times 10^{-11}$)

	CaF _{2(s)}	$Ca^{+2}_{(aq)}$	2F-(aq)
I		0	0
С	x = solubility	X	2x
Е		X	2x

$$K_{sp} = [x][2x]^2 = 4x^3 = 4.0 \text{ x } 10^{-1}$$

$$x = \sqrt[3]{(1.0 \times 10^{-1})} = 0.000215... \text{mol/L}$$

multiply by molar mass:

$$x=0.017\ g/L$$

10. a) What is the solubility in moles/L of AlPO₄ in 0.050 M Na₃PO₄? Ksp of AlPO₄ = **9.84** X 10^{-21}

	AlPO _{4 (s)}	Al^{+3} (aq)	PO ₄ -3 _(aq)
I		0	0.050
С	x = solubility	X	X
E		X	x + 0.050

$$K_{sp} = [x][x + 0.050] = 9.84 \times 10^{-21}$$

$$x = 1.97 X 10^{-19} mol/L$$

(if you are getting an answer of x=0 it's because in the conventional form of the quadratic formula, $b^2 >> 4ac$. So in such a case how do you get the correct answer of 1.97 X 10^{-19} mol/L? If you rationalize the denominator, you get an alternate form of the quadratic formula:

$$x = \frac{2c}{-b \pm \sqrt{b^2 - 4ac}}$$

This will give the correct answer.

b) If it wasn't for the 0.050M Na₃PO₄,how would the solubility have compared?

It would have been higher. The equilibrium is being shifted to the left(creating more solid) by increasing the amount of phosphate.

- Determine the oxidation number for each atom in the following molecules and calculate the total contribution by the atom.
- a) AlCl₃

When Cl is attached to only a metal, each atom will have an oxidation number of -1. It makes a total contribution of -3.

Al is +3

b) OC1-

Oxygen is -2, so -2 + Cl = -1

C1 = 1

This high oxidation state is what makes OCl- (bleach) an electron thief.

c) Mg²⁺

For any monoatomic ion, the charge is its oxidation number. Answer +2

d) KClO₃

K in any compound is +1 O is -2

$$^{+}1 + C1 + 3(-2) = 0$$

C1 = 6-1 = 5.

This high oxidation state is what makes KClO₃ an electron thief and for that reason it is used in matches.