Some More Challenging Stoichiometry Questions p69b

1. Methanol, CH₃OH, and ethanol, C₂H₅OH, can be used as fuel for a burner. The following diagrams show the energy released during the combustion of one mole of each substance.

If you burn one mole of methanol you will release 730 kJ If you burn one mole of ethanol you will release 1370 kJ

Which of the two combustion reactions illustrated above releases the most energy when 1 g of substance is burned?

1 g CH₃OH (mole/ 32 g) = 0.03125 moles CH₃OH 1 g C₂H₅OH (mole/ 46 g) = 0.0217moles C₂H₅OH

Methanol : 730 kJ/mole (0.03125 moles CH_3OH) = 22.81 kJ Ethanol: 1370 kJ(0.0217moles C_2H_5OH) = 29.72 kJ

2. While you are running, your body requires 2500 kJ/hr. It has been determined that 60% of this energy requirement is provided by the combustion of glucose ($C_6H_{12}O_6$) metabolized in your body.

The equation for the combustion of glucose is:

 $\mathrm{C_6H_{12}O_6} + 6~\mathrm{O_2} \rightarrow 6~\mathrm{CO_2} + 6~\mathrm{H_2O} + 2816~\mathrm{kJ}$

How many grams of glucose will be metabolized during a two-hour run?

You need 2500 kJ/hr (2 hr) = 5000 kJ

60%: 0.60(5000 kJ) = 3000 kJ will come from glucose

1 mole/2816kJ* (3000 kJ) = 1.06 moles of glucose

1.06 moles C₆H₁₂O₆ (180 g/mole) =190.8 g

3. Patrick wonders which gas he should choose for a gas fireplace for his country cottage. He is hesitating between propane (C_3H_8) and butane (C_4H_{10}) .

The combustion equations are:

 Knowing that the containers of gas are 5 kg each:

- A) Which gas provides the most energy?
- B) Which gas produces less carbon dioxide?

A) 5000 g (1 mole $C_3H_8/44$ g) = 113.63 moles C_3H_8

2233 kJ /mole (113.63 moles C_3H_8) = 253 735.79 kJ

5000 g (1 mole C_4H_{10} /58 g) = 86.2 moles C_4H_{10}

5306 kJ /2 moles (86.2 moles C_4H_{10}) = 228 688 kJ ; propane releases more.

B)

5000 g (1 mole C₃H₈ /44 g) = 113.63 moles C₃H₈

113.63 moles C_3H_8 (3 CO_2/C_3H_8) = 340.89 moles of CO_2

5000 g (1 mole C_4H_{10} /58 g) = 86.2 moles C_4H_{10}

86.2 moles C_4H_{10} ($8 CO_2/2$ moles C_4H_{10}) = 344.8 moles CO_2 ; butane produces more ; propane produces less

Gasoline (octane), C₈H₁₈, has a density of 703 g/L. Knowing that a car has a gas consumption of 6.0 L/100 km on a highway, how many moles of carbon dioxide are produced by the car after travelling 200 km on the highway? (Don't forget to write a balanced equation)

200 km(6 L/100 km) = 12 L

12 L (703 g/L) = 8436 g of gasoline have to be burnt

8436 g of gasoline(mole/114 g) = 74 moles

74 moles C₈H₁₈ (8 CO₂/ 1 C₈H₁₈) = 592 moles