Some More Challenging Stoichiometry Questions p69b

1. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, and ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, can be used as fuel for a burner. The following diagrams show the energy released during the combustion of one mole of each substance.

If you burn one mole of methanol you will release 730 kJ
 If you burn one mole of ethanol you will release 1370 kJ

Which of the two combustion reactions illustrated above releases the most energy when 1 g of substance is burned?
$1 \mathrm{~g} \mathrm{CH} \mathbf{3} \mathbf{O H}$ (mole/ 32 g) $=0.03125$ moles $\mathrm{CH}_{3} \mathrm{OH}$
$1 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{mole} / 46 \mathrm{~g})=0.0217$ moles $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Methanol : $730 \mathrm{~kJ} /$ mole ($\mathbf{0 . 0 3 1 2 5}$ moles $\mathrm{CH}_{3} \mathrm{OH}$) $=22.81 \mathrm{~kJ}$
Ethanol: $1370 \mathrm{~kJ}\left(0.0217 \mathrm{moles} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=29.72 \mathrm{~kJ}$
2. While you are running, your body requires $2500 \mathrm{~kJ} / \mathrm{hr}$. It has been determined that 60% of this energy requirement is provided by the combustion of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ metabolized in your body.
The equation for the combustion of glucose is:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+2816 \mathrm{~kJ}
$$

How many grams of glucose will be metabolized during a two-hour run?
You need 2500 kJ/hr (2 hr) = 5000 kJ

60\%:
$0.60(5000 \mathrm{~kJ})=3000 \mathrm{~kJ}$ will come from glucose
1 mole/2816kJ* $(3000 \mathrm{~kJ})=1.06$ moles of glucose

1.06 moles $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(180 \mathrm{~g} / \mathrm{mole})=190.8 \mathrm{~g}$

3. Patrick wonders which gas he should choose for a gas fireplace for his country cottage. He is hesitating between propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ and butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$.

The combustion equations are:

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+2233 \mathrm{~kJ} \\
& 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+5306 \mathrm{~kJ}
\end{aligned}
$$

Knowing that the containers of gas are 5 kg each:
A) Which gas provides the most energy?
B) Which gas produces less carbon dioxide?
A) $\quad 5000 \mathrm{~g}\left(1 \mathrm{~mole}^{\mathrm{C}} \mathbf{H}_{8} / 44 \mathrm{~g}\right)=113.63$ moles $\mathrm{C}_{3} \mathrm{H}_{8}$
$2233 \mathrm{~kJ} / \mathrm{mole}\left(113.63\right.$ moles $\left.\mathrm{C}_{3} \mathrm{H}_{8}\right)=253735.79 \mathrm{~kJ}$
$5000 \mathrm{~g}\left(1 \mathrm{~mole}_{4} \mathrm{H}_{10} / 58 \mathrm{~g}\right)=86.2$ moles $\mathrm{C}_{4} \mathrm{H}_{10}$
$5306 \mathrm{~kJ} / 2$ moles (86.2 moles $\mathrm{C}_{4} \mathrm{H}_{10}$) $=228688 \mathrm{~kJ}$; propane releases more.
B)
$5000 \mathrm{~g}\left(1\right.$ mole $\left.\mathrm{C}_{3} \mathrm{H}_{8} / 44 \mathrm{~g}\right)=113.63$ moles $\mathrm{C}_{3} \mathrm{H}_{8}$
113.63 moles $\mathrm{C}_{3} \mathrm{H}_{8}\left(3 \mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}\right)=\mathbf{3 4 0 . 8 9}$ moles of CO_{2}
$5000 \mathrm{~g}\left(1 \mathrm{~mole}_{4} \mathrm{H}_{10} / 58 \mathrm{~g}\right)=86.2$ moles $\mathrm{C}_{4} \mathrm{H}_{10}$
86.2 moles $\mathrm{C}_{4} \mathrm{H}_{10}$ ($8 \mathrm{CO}_{2} / 2$ moles $\left.\mathrm{C}_{4} \mathrm{H}_{10}\right)=344.8$ moles CO_{2}; butane produces more; propane produces less
4. Gasoline (octane), $\mathrm{C}_{8} \mathrm{H}_{18}$, has a density of $703 \mathrm{~g} / \mathrm{L}$. Knowing that a car has a gas consumption of $6.0 \mathrm{~L} / 100 \mathrm{~km}$ on a highway, how many moles of carbon dioxide are produced by the car after travelling 200 km on the highway? (Don't forget to write a balanced equation)

200 km(6 L/ 100km) = 12 L
$12 \mathrm{~L}(703 \mathrm{~g} / \mathrm{L})=8436 \mathrm{~g}$ of gasoline have to be burnt

8436 g of gasoline(mole $/ 114 \mathrm{~g}$) $=74$ moles

74 moles $\mathrm{C}_{8} \mathrm{H}_{18}\left(8 \mathrm{CO}_{2} / 1 \mathrm{C}_{8} \mathrm{H}_{18}\right)=592$ moles

