Purpose: to calculate the $\operatorname{Kp}(b a s e d$ on pressure) and $\mathrm{Kc}($ regular K based on concentration) for

$$
\mathrm{NaHCO}_{3(\mathrm{~s})} \mathrm{NaOH}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

1. Go to

http://www.chm.davidson.edu/ChemistryApplets/equilibria/EquilibriumConstant.html

2. Scroll down to the bottom of the page until you see a flask.(part 1 only, not part 2)
3. Click the "Add Sodium Hydrogen Carbonate" button.
4. Click the "Evacuate Bulb" button.
5. Click the "Heat the system" button. It will bring you to 800 K .
6. Now read the equilibrium pressure off the manometer (u-shaped tube)by subtracting the right- hand column reading from the left- hand column. Record it here \qquad - \qquad $=$ \qquad
7. Convert mm of Hg to kPa by multiplying by 101.3 / 760.
8. If the number of gas molecules were the same on each side of the equation, then $\mathrm{Kp}=\mathrm{Kc}$. $\mathrm{Kp}=$ equilibrium constant based on pressure.
$\mathrm{Kc}=$ normal equilibrium constant based on concentration.
In our case $\mathrm{Kp}=$ Pressure of CO_{2}. $=$ \qquad (note: if you check your answer, it will not match numerically because they are not using kPa)
9. To calculate Kc , use $\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}}$

Where $\Delta \mathrm{n}=$ difference in gaseous moles between the right side and left hand side of the equilibrium equation.

Kc = \square
10. Write a
conclusion.
\qquad
\qquad

