Chemistry 534 Calorimetry Take Home Lab

Name	

Purpose: To

To accurately determine the molar heat of solution of ammonium nitrate by taking the heat absorbed by the calorimeter into consideration.

Procedure

1. Go to

 $\underline{http://www.chm.davidson.edu/ChemistryApplets/calorimetry/HeatOFSolutionOfAmmoniumNitrate.html}$

- 2. Scroll down to **Part 1**.
- 3. Record the initial temperature in the data table.
- 4. Press the start button.
- 5. Record the minimum temperature.
- 6. Scroll down to **Part 2**.
- 7. Change the mass of NH₄NO₃ to 10.00 g, and the mass of water to 100.0 g.
- 8. Record the initial temperature.
- 9. Press the reset button.
- 10. Press start.
- 11. Record the minimum temperature reached.

Data

Part	1	
Mass of NH ₄ NO ₃	5.00 g	
Mass of H ₂ O	60.00 g	
initial temperature		
minimum temperature		
Part 2		
Mass of NH ₄ NO ₃	10.00 g	
Mass of H ₂ O	100.00 g	
initial temperature		
minimum temperature		

Analysis

<u> Part 1</u>

- 1. Calculate Q_c , that is the heat absorbed by the calorimeter itself. This can be calculated by multiplying 153. J / °C by the ΔT measured in the experiment.
- 2. Use $Q_w = mc \Delta T$ to calculate the amount of heat absorbed by the water in the calorimeter.

4.	Find ΔH .
5.	Calculate the molar heat of solution, $\Delta H/n$.
Part 2	
Repeat the experiment	ne above steps to once again calculate $\Delta H/n$ using the data from Part 2 of the ent.
Conclus	ion:

Find the total amount of heat absorbed.

3.

4.