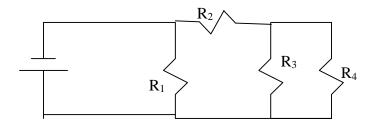

Combination Circuits Think Tank

1. Four *identical* resistors are connected to each other in some unknown way. The following voltages are measured:

 $\begin{aligned} &\mathsf{Vt} = 12 \; \mathsf{V} \\ &\mathsf{V}_1 = 12 \; \mathsf{V} \\ &\mathsf{V}_2 = 4 \; \mathsf{V} \\ &\mathsf{V}_3 = 4 \; \mathsf{V} \\ &\mathsf{V}_4 = 4 \; \mathsf{V} \end{aligned}$

Draw a circuit consistent with these results.

Solution:


 $R_2,\,R_3$ and R_4 are in series. Being identical resistors, they have the same voltage, so since $V_2+V_3+V_4=Vt$

 $3V_2 = 12$

 $V_2 = 12/3 = 4 V$

The trio of resistors is parallel to R_1 , so their combined voltage of 12 V equals that of R_1 .

2. Four identical resistors are connected as shown in the diagram below:

If the total voltage is 12V, find the voltage across each resistor.

Solution:

 R_1 experiences the total voltage. $V_1 = 12V$.

 R_4 and R_3 are parallel to each other, and since they're identical, their combined resistance is half of any individual resistance such as R_2 . Since voltage is directly proportional to resistance, $V_2 = 2V_3$.

Also since R_2 is in series with the combined parallel branch consisting of R_3 and R_4 , and since R_1 is in parallel with the rest,

 $V_2 + V_3 = V_1$. Substituting: $2V_3 + V_3 = 12$ $V_3 = 4$ V. (and $V_4 = 4$ V.) $V_2 = 2(4) = 8$ V