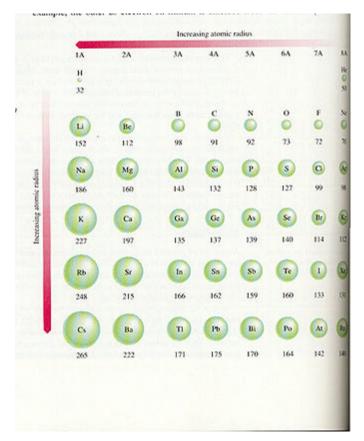
Periodic Trends (436 only)


Electronegativity

This is a measure of an atom's tendency to pull electrons towards itself while bonded to another atom. In a sense, it is a measure of greediness. The nonmetals, which are close to having a full energy level, are far more electronegative than metals.

Within any period, as atomic number increases, electronegativity decreases.

For the nonmetals, *within a family*, electronegativity *decreases* with increasing number. So fluorine, for instance, is the most electronegative halogen; in fact it is the periodic table's most electronegative atom.

Atomic Volume or Radius

The above illustration reveals how, *within a family*, not surprisingly, atomic volume increases with increasing atomic number. But note that across a period (from left to right), atomic volume actually decreases. This is because additional nuclear charge is acting on the same number of shells.

Melting Point and Boiling Points

For alkali metals, both melting points and boiling points decrease with increasing atomic

number. So Fr is the lowest-melting alkali metal.

For halogens, the trend reverses itself. Both melting points and boiling points increase with increasing atomic number. Hence at room temperature chlorine is a gas, but bromine is a liquid and astatine and iodine are still solids.

Ionization Energy

Ionization energy is the amount of energy needed to remove an electron from an atom in its gaseous state.

With increasing atomic number within a family, ionization energy decreases. Within a period, ionization energy *increases* as one moves from left to right.